ML approaches to improve patient outcomes for Heart Disease and Diabetes diagnoses

AMERICAN COLLEGE of CARDIOLOGY.

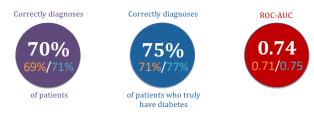
Rachel Roggenkemper, Jacob Perez, Brendan Callender Cal Poly Department of Statistics in collaboration with the American College of Cardiology

Background

Diabetes and Cardiovascular Disease (CVD) are closely linked, requiring integrated approaches for risk assessment. These conditions significantly impact global health outcomes.

Project Goals

- 1. Develop predictive algorithms that improve diagnostic consistency for these disease states.
- 2. Prioritize equitable outcomes for male and female patients to improve patient outcomes across sex.


Project Data

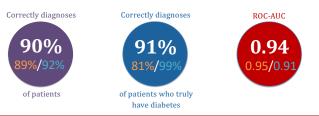
- 1. CDC Diabetes Health Indicators Dataset
- 2. CVD Data from a Multispecialty hospital in India
- 3. Sylhet Diabetes Hospital in Bangladesh dataset

CDC Diabetes Decision Tree Classifier

Only requires 4 easy-to-collect predictors:

- 1. Whether patient has high blood pressure
- 2. Patient BMI
- Whether patient has difficulty walking or climbing stairs 3.
- 4. Whether the patient would describe their current health as "very good"

CVD Logistic Regression with Elastic Net


Most Important Predictors for:

most important i realer			
Positive Heart Disease Diagr	nosis	Negative Heart Di	sease Diagnosis
ST Depression of EKG		Normal ST Slope o	on EKG
Presence of Chest Pain		Normal Resting Bl	ood Pressure
96% 96%/95%	Correctly d 95 94%/2 of patients v have dia	% 0 96% who truly	ROC-AUC 0.99 0.99/0.98

ES Diabetes Logistic Regression with LASSO

Most Important Predictors for:

Positive Diabetes Diagnosis	Negative Diabetes Diagnosis
Having Excessive Itching	Having Excessive thirst
Having Muscle Stiffness	Having Excessive urination

Methods

- 1. Exploratory Data Analysis
 - Examined distribution of sex and diagnosis in data
 - Investigated predictor relationships with diagnoses
- 2. Classification Models (Supervised Learning)
 - Decision Tree Classifiers
 - Logistic Regression with Ridge/LASSO penalties
- 3. Evaluation Metrics Used
 - Accuracy Overall correctness of model diagnosis predictions
 - Sensitivity Correctness of model diagnosis for those who truly have a positive diagnosis
 - **ROC-AUC** Measures model's ability of balancing the true positive rate and false positive rate. We expect a value of 0.5 for random guessing and 1 for a perfect model.

Limitations

External Validity of Results:

Due to cultural differences which influence individuals' diet. health habits, perceptions of pain, and medical symptoms, we advise only applying these models for the following populations:

- CDC Diabetes Model -- American adults
- CVD Model -- Indian adults
- ES Diabetes Model -- Indian adults

We also recognize these **data represent** individuals who do have access to health care and may underrepresent marginalized groups who lack access to health care.

Negative Model Impact:

• False negatives could lead to diseases being left untreated o This can potentially affect patients with atypical symptoms

Lastly, FDA approval and additional model testing is **required** before these models can be freely used by doctors

References

Doppala, Bhanu Prakash; Bhattacharyya, Debnath (2021), "Cardiovascular Disease Dataset", Mendeley Data, V1, doi: 10.17632/dzz48mviht 1

Centers for Disease Control and Prevention (CDC), Behavioral Risk Factor Surveillance System Survey Data, [year of data], Atlanta, Georgia: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention

Early Stage Diabetes Risk Prediction [Dataset]. (2020). UCI Machine Learning Repository. https://doi.org/10.24432/C5VG8H

Project Data

CDC Diabetes Dataset (N = 70,692):

 Classification Target: Diabetes vs No Diabetes • 50/50 split in data (positive/negative)

• **Demographic** and **Lifestyle** predictors

Easily accessible, minimal testing

High BP?	High Chol?	BMI	Sex	 Age Group	Difficulty Walking?	Diabetes?
Yes	Yes	33	Male	 55-59	Yes	Yes
No	Yes	24	Female	 18-24	No	No

Cardiovascular Disease Dataset (N = 1,000):

- Classification Target: Heart Disease vs No Heart Disease • 58/42 split in data (positive/negative)
- · Demographic, Clinical, Biochemical, and Lifestyle predictors · Patient testing required

Age	Sex	Chest Pain	Resting BP	Peak Exercise Slope		Heart Disease?
53	Male	Non-Anginal	171	 Downsloping	3	Yes
40	Male	Typical Angina	94	 Upsloping	1	No

Early-Stage (ES) Diabetes Dataset (N = 520):

- Classification Target: Diabetes vs No Diabetes
 - 60/40 split in data (positive/negative)

· Demographic, Symptom-Based predictors • Mini

Excessive Thirst?	Excessive Urination?	Sex		Excessively Hungry?	Vision Blurring?	Diabetes?
Yes	Yes	Male	 51	Yes	No	Yes
No	Yes	Female	 43	No	Yes	No