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Introduction

In this report we will be performing survival analysis techniques on data from a balance test that was
conducted by the US Center for Disease Control (CDC). More specifically, the test was conducted by the
CDC from 2001 to 2002 and contains the results for 2238 participants as part of the National Health and
Nutrition Examination Survey (NHANES). The data also contains information relating several other tests
conducted, body measures, demographics, and questionnaire responses for each participant. The purpose
of this experiment, as stated by the CDC, was to provide data for analysis on predictors of balance
disorders within the population of U.S. adults.

The participants were sampled from the population of all U.S. adults ages 40 or older. Participants were
excluded if they felt dizzy, were unable to stand on their own, weighed more than 275 pounds, or could
not properly fit into personal safety equipment. Participants were also excluded if they could not stand on
their own, were amputees, were experiencing dizziness, or were blind. The balance test administered was
the Romberg Test, where four balance tests are administered in order of increasing difficulty. For our
analysis, we will be specifically looking at the results of the first trial of the 4th and hardest balance test.
This test involved the participant balancing on a foam pad with their eyes closed.

The time to event variable can be defined as time until failure in seconds with the test ending after 30
seconds. Failure was determined as the subject opening their eyes to maintain balance, moving their arms
or feet to maintain balance, or needing assistance to maintain balance. Complete times in the data are
represented by individuals who failed the balance test before 30 seconds. Right censored times occur in
the data for individuals who passed the balance test and maintained balance for the 30 second duration of
the test. Additional variables we included for our analysis include the participants weight, height, BMI,
gender, and age in months.

Parametric Survival Analysis

We fit several parametric models to the balance test results in order to determine a probability distribution
which best modeled the time until loss of balance. Each distribution was fit to the data using maximum
likelihood estimation to determine parameter estimates. Additionally, we observed the Anderson-Darling
(AD) test statistic to measure the goodness of fit of the probability distribution to the data. Since lower
values of the AD test statistic represent a better fit to the data, we selected the probability distribution
which produced the lowest AD test statistic when fit to the data. Table I contains a list of all the



probability distributions fit to the data and their respective AD statistics. Fitting a three parameter Log
Normal distribution to the data resulted in the lowest AD test statistic value of 7295.1.

Table 1. Anderson-Darling Test Statistics by Probability Distribution

Probability Distribution Anderson-Darling Test Statistic
Weibull 7304.9
Exponential 7322.1
Log Normal 7299.3
Logistic 7327.8
Log Logistic 7299.4
Smallest Extreme Value 7336.6
3 Parameter Log Logistic 7297.3
2 Parameter Exponential 7336.3
3 Parameter Log Normal 7295.1
3 Parameter Weibull 7299.9

The resulting estimated survival function using a three parameter log normal distribution can be seen
below in Figure 1. From the curve we see that the probability of maintaining balance up to time t begins
decreasing after 1 second. Additionally, we see the probability of maintaining balance up to time
decreases most quickly between 1 and 5 seconds and decreases at a slower rate between 5 and 30 seconds.
Finally, we see that the curve approximates around 46% of participants to pass the balance test meaning
they maintained balance up to 30 seconds.

Figure 1. Estimated Survival Function for 3 Parameter Log Normal Distribution
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The estimated hazard curve using a three parameter log normal distribution can be seen below in Figure
2. From the curve we see the hazard of losing balance at time t given a participant maintained balanced up
to time t rapidly increases from 1 to 2 seconds. From there, the hazard decreases rapidly between 2 to 5
seconds, and decreases at a slower rate between 5 and 30 seconds.



Figure 2. Estimated Hazard Function for 3 Parameter Log Normal Distribution
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The estimated survival functions for both males and females can be seen in Figure 3 below. From the
curves we see that for any time t, the probability of maintaining balance up to time t is higher for males
compared to females. Figure 4 contains the estimated hazard curves for both males and females. We see
the hazard curves follow the same pattern with a rapid increase between 1 and 2 seconds. Additionally, we
see that the hazard of losing balance at time t, given an individual has not lost balance up to time t is
higher for females compared to males. Finally, we can compare the survival experiences using summary
statistics contained in 7able 2. We see that men tend to lose balance later than women since the median
time to lose balance for men is 25.21 seconds compared to 21.97 seconds for women.

Figure 3. Estimated Survival Functions by Gender
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Figure 4. Estimated Hazard Functions by Gender
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Table 2. Survival Summary Statistics by Gender
Gender Mean Median
Male 251.41 25.21
Female 215.18 21.97

Table 3. BMI to Weight Category Mappings

BMI Range Weight Category
<18.5 Underweight
18.5-24.9 Healthy Weight
25.0-299 Overweight
>30.0 Obese

We binned different ranges of BMI into different weight categories to create a new categorical variable
with 4 levels in the data. These mappings can be found in 7able 3 above. Looking at the estimated
survival functions below in Figure 5, we see the survival probabilities differ visually between the four
groups. For any time t, the probability of maintaining balance beyond time t is the highest for obese
individuals. On the other hand, it is the smallest for underweight individuals for any time t. Figure 6
contains the hazard functions for each of the four weight categories. We see the hazard of losing balance
at time t, given an individual has maintained balance up to time t, is extremely high between 1 and 2
seconds for underweight individuals compared to the other weight categories. We also observe that the
hazard of losing balance at any time t is the lowest for obese individuals compared to the other weight
categories. These observations are backed by 7able 4 which contain the summary statistics relating to the
different weight categories. We observe that underweight individuals have the shortest medium time until
losing balance followed by healthy weight individuals. Obese individuals have the longest median time
until balance is lost followed by overweight individuals.



Figure 5. Estimated Survival Functions by Weight Category
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Figure 6. Estimated Hazard Functions by Weight Category
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Table 4. Survival Summary Statistics by Weight Category
Weight Status Mean Median
Underweight 651.20 9.87
Healthy Weight 167.53 19.07
Overweight 150.31 23.11
Obese 467.10 37.96




Non-parametric Survival Analysis

The estimated Kaplan-Meier survival curve for all participants can be seen below in Figure 7. From the
curve we see that the probability of maintaining balance up to time t begins to decrease after about 1
second. The probability of maintaining balance up to time t decreases the quickest between 1 and 5
seconds, and then begins to taper off from between 5 and 30 seconds. The curve approximates about 48%
of participants to pass the balance test, which means successfully balancing for the full 30 seconds.

Figure 7. Estimated Kaplan-Meier Survival Curve for all Participants
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Figure 8. Estimated Kaplan-Meier Hazard Function for all Participants
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The estimated Kaplan-Meier hazard function for all participants is displayed above in Figure 8. From the
curve, we see that given a participant has maintained balance up to time t, the probability of losing
balance per a specific interval of time quickly increases from 1 to 2 seconds and is at its highest between
2 and 6 seconds. From there, the Kaplan-Meier estimate for hazard decreases promptly between 5 to



about 15 seconds. Interestingly see a spike in the estimated hazard at 15 seconds with a slow decrease
afterwards between 16 and 30 seconds.

Table 5. Survival Summary Statistics by Gender Category

Gender Mean Median
Male 18.64 24
Female 17.92 18

Figure 9. Estimated Kaplan-Meier Survival Curve by Gender
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From Figure 9 above we see that from 0 to 5 seconds, the probability of maintaining balance up to time t

is almost equal for males and females. From 5 to 30 seconds, the probability of maintaining balance up to

time t is higher for males compared to females. This phenomenon is further backed up by the summary
statistics found in 7able 5. The mean time to failure for men is 18.64 seconds compared to 17.92 for
females indicating participants who are male tend to maintain balance longer than participants who are

female. In Figure 10 below, the estimated Kaplan-Meier Hazard functions based on gender are similar for

both males and females. Given a participant maintained balance up to time t, the probability of losing

balance per a specific time interval quickly increases from 1 to 4 seconds for both males and females. The

estimated hazard then speedily decreased, with spikes at 10, 15, 20, and 25 seconds for males.
Additionally, the estimated hazard for females decreases quickly at 5 seconds, with a noticeable spike at
15 seconds.



Figure 10. Estimated Kaplan-Meier Hazard Functions by Gender
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Table 7. Log-Rank Test for Gender
Log-Rank Test Statistic DF p-value
1.9 1 2

Table 7 contains the results for a log-rank test which is the formal test for determining whether the
survival experiences differ between two groups. More specifically, the test was conducted to determine
whether there are significant differences in the survival experiences between men and women. The null
hypothesis is that the probability of maintaining one’s balance beyond time t is the same regardless of
gender. Based on the rather low test statistic of 1.9 and high p-value of 0.2 for this log-rank test, we fail to
reject this null hypothesis at any reasonable significance level. Therefore, there is not enough evidence to
conclude that the probability of a participant maintaining their balance beyond time t differs for any time t
between males and females.

Table 6. Survival Summary Statistics by Weight Category

Weight Status Mean Median
Underweight 13.53 8.5
Healthy Weight 16.83 14
Overweight 18.23 19

Obese 20.24 30




Figure 11. Estimated Kaplan-Meier Hazard Functions by Weight Classification
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We were able to model the survival experiences of different weight categories using Kaplan-Meier curves.
The categories were created by binning the BMI variable. (See Table 3) A plot containing the overlaid
curves for each category can be found above in Figure 11. Much like the estimated survival curves using
parametric methods, the plot above shows that for any time t, the probability of maintaining balance
beyond time t is the highest for obese individuals. On the other hand, for any time t, the probability of
maintaining balance beyond time t is the lowest for underweight individuals. This is further backed up by
Table 6 which contains summary statistics for each weight category. We see that obese individuals have
the highest mean time until balance is lost, that being 20.24 seconds, while underweight individuals have
the lowest, 13.53 seconds.

Figure 12. Estimated Kaplan-Meier Hazard Functions by Weight Classification
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The estimated Kaplan-Meier hazard functions by weight classification are shown above in Figure 12.
Given an individual has not lost balance up to time t, the conditional probability of losing balance per an
interval of time is similar for healthy weight, overweight, and obese individuals. For these participants,
the estimated hazard increases for the first five seconds, after which the hazard of losing balance at time t
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seconds gradually decreases for the remainder of the time period. The estimated hazard function for
participants who are underweight deviates from this trend, and there are notably three large spikes at
approximately the first three seconds, around 5 seconds, and at about 13 seconds. However, it is important
to note that a very small proportion of the sample was considered to be underweight, so there is less data
for inference on this group.

Table 8. Log-Rank Test for Weight Classification

Log-Rank Test Statistic DF p-value
34.1 3 <.0001

We performed a log-rank test to determine whether the survival experiences differ between the different
weight categories. The results of this test can be found above in Table 8. The null hypothesis is that the
probability of a participant maintaining their balance beyond time t seconds is the same regardless of
weight category for any time t. Based on the high test statistic for this test of 34.1, and very small p-value
of <.0001, we reject this null hypothesis at any reasonable level of significance. There is very strong
evidence to conclude that the survival experiences for the different weight categories differ significantly
for at least some time t.

Regression Analysis

In order to examine the relationship between the hazard of losing balance and the variables age, gender,
BMI, weight and height, we fit Cox regression models to the data. After iterating through multiple
models, our final Cox regression model includes age and the interaction between gender and BMI, and
excludes weight and height.

Table 9: Final Model Parameter Estimates and Significance

Predictor Parameter 8 Standard Wald Test 95% Confidence
EAstimate € Error P-Value Interval for e’
B)
Lower Upper
Bound  Bound
Gender (Female) -1.093 0.334 0.348 0.00169 0.1695  0.6631
BMI -0.0531 0.948 0.0104 3.24e-07 0.9291 0.9678
Age (Months) 0.00388 1.004  0.000197 2e-16 1.0035 1.0043
Gender * BMI 0.0425 1.043  0.0125 0.000649 1.0182 1.0692

At a significance level of 0.01, based on the extremely small p-values from Wald tests performed on each
of the individual predictors, we can conclude that each of these predictors are significantly associated
with the hazard of losing balance, after adjusting for the remaining predictors. Furthermore, based on the
small p-value for the likelihood ratio test, we can conclude that age and the interaction between gender
and BMI are jointly significantly associated with the hazard of losing balance.
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In order to use Cox regression, the data must conform to the proportional hazards assumption. We
examined LOWESS curves fit to the Schoenfeld residuals as a factor of time, as well as performing a
formal Schoenfeld residuals test, in order to determine if the assumption is fulfilled.

Figure 13: Schoenfeld Residuals for Cox Regression Predictors as a Factor of Time
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At a significance level of 0.01, none of the Schoenfeld residual tests on the predictors yielded a p-value
less than or equal to 0.01. Based on both observing flat horizontal LOWESS curves for the Schoenfeld
residuals as a function of time for each predictor, as well as the high p-values for the Schoenfeld residuals
test test, we can conclude that the proportional hazards assumption has not been violated for any of the
predictors included in this model. It is therefore appropriate to use Cox regression to analyze the joint
relationship between each of these predictors and the risk of losing balance during the balance test. No
outlying values were removed from the analysis.

In order to investigate how the effect of gender on the hazard of losing balance may change depending on
BMI due to the interaction between gender and BMI, we examined the hazard ratio for each of the

scenarios seen in Table X below.

Table 10: Estimated Hazard Ratios between Genders, for Different BMI values, Adjusting for Age

Hazard Ratio (HR) Description Estimated HR  95% Confidence Interval for HR

Lower Bound Upper Bound

Male with Sample Minimum BMI (15.8) 1.524 0.840 2.765
vs. Female with Sample Minimum BMI,
Adjusting for Age

0.902 0.451 1.795

Male with Sample Average BMI
(28.139) vs. Female with Sample
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Average BMI, Adjusting for Age

Male with Sample Maximum BMI 0.292 0.0915 0.934

(54.65) vs. Female with Sample
Maximum BMI, Adjusting for Age

The risk of losing balance is estimated to be 52% higher for male balance test participants with sample
minimum BMI (15.80) compared to female balance test participants of sample minimum BMI, after
adjusting for age. Furthermore, we are 95% confident that the risk of losing balance for male balance test
participants of sample minimum BMI is between 16% lower to 176% higher than the risk of losing
balance for female balance test participants of sample minimum BMI, after adjusting for age.

The risk of losing balance is estimated to be 10% lower for male balance test participants with sample
average BMI (28.14) compared to female balance test participants of sample average BMI, after adjusting
for age. Furthermore, we are 95% confident that the risk of losing balance for male balance test
participants of sample average BMI is between 55% lower to 79% higher than the risk of losing balance
for female balance test participants of sample average BMI, after adjusting for age.

The risk of losing balance is estimated to be 71% lower for male balance test participants with sample
maximum BMI (54.65) compared to female balance test participants of sample maximum BMI, after
adjusting for age. Furthermore, we are 95% confident that the risk of losing balance for male balance test
participants of sample maximum BMI is between 7% to 91% lower than the risk of losing balance for
female balance test participants of sample maximum BMI, after adjusting for age.

Between all three comparisons of gender (at sample minimum BMI, average BMI, and maximum BMI),
we can see how the relationship between the hazard of losing balance and gender changes depending on
BMI in this model. For the sample minimum BMI, the risk of losing balance is estimated to be higher for
male participants than female participants while for the sample maximum BMI, the risk of losing balance
is estimated to be lower for male participants than female participants, after adjusting for age. Because we
observe that after adjusting for age, the 95% confidence intervals for the true hazard ratio between male
and female participants at sample minimum BMI and sample average BMI both capture the value of 1
while the 95% confidence interval for the true hazard ratio between male and female participants at
sample maximum BMI does not, there is evidence for a difference in true hazard ratio between genders at
higher BMI but not lower BMI, after adjusting for age.

We additionally investigated how the relationship between BMI and the hazard of losing balance differed
by gender.

Table 11: Estimated Hazard Ratio for 5 Unit Increase in BMI, by Gender, Adjusting for Age

Hazard Ratio (HR) Description Estimated HR 95% Confidence Interval for HR

Lower Bound Upper Bound
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5 Unit Increase in BMI, Male, 0.767 0.692 0.849

Adjusting for Age
5 Unit Increase in BMI, Female, 0.948 0.839 1.072
Adjusting for Age

The risk of losing balance is estimated to decrease by 23% for every 5 unit increase in BMI in male
balance test subjects, after adjusting for age. Furthermore, we are 95% confident that the risk of losing
balance decreases by between 15% to 31% for every 5 unit increase in BMI in male balance test subjects,
after adjusting for age.

The risk of losing balance is estimated to decrease by 5% for every 5 unit increase in BMI in female
balance test subjects, after adjusting for age. Furthermore, we are 95% confident that the risk of losing
balance is between 16% lower to 7% higher for every 5 unit increase in BMI in male balance test
subjects, after adjusting for age.

Between both hazard ratio analyses, male and female, for a 5 unit BMI increase, we can see that for both
genders, a 5 unit increase in BMI corresponds to an estimated decrease in risk of losing balance at any
time during the balance test. However, the 95% confidence interval for a 5 unit increase in BMI for
female participants captures the value 1, which corresponds to a percent difference of 0% and indicates a
lack of evidence that BMI is associated with the hazard of losing balance for female participants. On the
other hand, the 95% confidence interval for a 5 unit increase in BMI for male participants does not
capture the value 1, indicating evidence that BMI is associated with the hazard of losing balance for male
participants.

Conclusion

Based on our survival analysis using parametric, nonparametric, and regression methods, we identified
significant trends and patterns in time until losing balance during the fourth trial of the NHANES balance
test. In general, for the population of healthy and unimpaired U.S. adults ages 40 and over, the greatest
estimated risk of losing balance during the balance test occurs within the first five seconds. Survival times
for the balance test may be best described by a three-parameter lognormal distribution. These findings
imply that adults with poor balance might be quickly distinguished by an extremely short survival time.

Furthermore, we identified differences in balance test survival experiences for varying populations based
on gender, height, weight, age in months, and BMI. Specifically, in our parametric and nonparametric
survival analyses, we found that survival experiences differ considerably between BMI classes. For any
time t, individuals classified as obese or overweight were estimated to be at lower risk for losing balance
and had a higher estimated probability of remaining balanced past that time, compared to healthy or
underweight individuals. Applying a Cox regression analysis with a model involving age and an
interaction between gender and BMI revealed that this relationship between risk of losing balance and
BMI depends on gender, with more significant differences in estimated risk of losing balance between
high and low BMI occurring for male participants than female participants, after controlling for age.
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While there may not be significantly different survival experiences between male and female gendered
participants, after controlling for age, the relationship between risk of losing balance significantly
depends on gender.

Overall, this survival analysis revealed that BMI is a significant factor in survival experience for
individuals undergoing balance tests. As a result, it is important to keep BMI under consideration when
evaluating an individual for balance disorders. Because adults with higher BMI are estimated to have a
higher probability of remaining balanced beyond any given time compared to adults with lower BMI, it
may be more difficult to diagnose balance disorders and conditions where loss of balance is an important
symptom for individuals with higher BMI.
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Parametric Analysis Minitab Output
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Survival Plot for time
~ 3-Parameter Lognormal
Censoring Column in censor - ML Estimates

80 -

60 -

50 -

gender
—— Female
— — Male

Table of Statistics
Loc Scale Thres AD* F C
314111 210793 0930749 3431970 596 537
325723 212994 (0.939812 3830224 G0O7 598

Hazard Plot for time
~ 3-Parameter Lognormal
Censoring Column in censor - ML Estimates

0.07 -

0.06 -

0.05

0.04 -

0.03 -

0.02

0.01 4

0.00

10 15 20 25 30
time

gender
— Female
— — Male

Table of Statistics
Loc Scale Thres AD* F C
314111 210793 0930749 3431.970 596 537
325723 212994 (939812 3839224 607 598



17

Survival Plot for time
~ 3-Parameter Lognormal
Censoring Column in censor - ML Estimates

Percent

weight_category
— Healthy Weight
Obese
———— Owverweight
Underweight

Table of Statistics
Scale Thres AD* F C
210839 0950889 1644555 336 261
225085 0945092 274.795 343 430
1.95265 0905345 2763.789 504 434
2920904 0.960320 62790 20 10

Loc
2.89702
361136
310022
218770

Hazard Plot for time
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library(survival)
library(tidyverse)

balance <- read.csv("balance test.csv")
balance

cr.obj <- coxph (Surv(time, censor)~as.factor(gender)*bmit+age months,
data = balance)
summary (cr.obj)

# Schoenfeld Residuals Analysis
schoen <- residuals(cr.obj, type="schoenfeld")

balance?2 <- balance %>%
select (time, censor, gender, bmi, age months) %>%
drop na()

comp.times <- balance2 %>%

3
o
°

filter (censor !'= 0) %>
pull (time)

par (mfrow=c (2,2))

## Schoenfeld Residuals vs Gender
plot (comp.times, schoen[,1], xlab="Time",
ylab="Schoenfeld Residuals", main="Predictor: Gender")
smooth.sres <- lowess (comp.times, schoen[,1])
lines (smooth.sres$x, smooth.sresSy, lty=1)

## Schoenfeld Residuals vs BMI

plot (comp.times, schoen[,2], xlab="Time",
ylab="Schoenfeld Residuals", main="Predictor: BMI")

smooth.sres <- lowess (comp.times, schoen[,2])

lines (smooth.sres$x, smooth.sresSy, lty=1)

## Schoenfeld Residuals vs Age in Months
plot (comp.times, schoen[,3], xlab="Time",
ylab="Schoenfeld Residuals", main="Predictor: Age in Months")
smooth.sres <- lowess (comp.times, schoen[,3])
lines (smooth.sres$x, smooth.sresSy, lty=1)

## Schoenfeld Residuals vs Gender x BMI
plot (comp.times, schoen[,4], xlab="Time",
ylab="Schoenfeld Residuals", main="Predictor: Gender*BMI")

smooth.sres <- lowess (comp.times, schoen[,4])
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lines (smooth.sres$x, smooth.sresSy, lty=1)

## Schoenfeld Residuals Test
cox.zph(cr.obj, transform="log")

# Hazard Ratios

min age <- min(balance2$age months)
mean_age <- mean(balance2$age_months)
max age <- max(balance2$age months)

## Function to calculate estimated hazard ratio
haz.ratio <- function(cr.obj, vl, v2) {
coefs <- cr.objScoefficients
hr <- exp(sum(coefs * vl)) / exp(sum(coefs * v2))
return (hr)

## Function to calculate hazard ratio confidence interval
## Verified correctness by comparing with summary (cr.obj) output
hr.ci <- function(cr.obj, vl, v2) {

v <- vl - v2

varcov <- cr.objS$var

varcov|[lower.tri(varcov)] <- 0 # Make sure we don't repeat

covariances
var <- sum(v[l] * v * wvarcovI[l,]) +
sum(v[2] * v * varcov[2,]) +
sum(v[3] * v * varcov([3,]) +

sum(v[4] * v * wvarcov/[4,])
se <- sgrt(var)
loghr <- log(haz.ratio(cr.obj, vl, v2))
return (exp (loghr + c(-1.96, 1.96) *se))

## HR Comparing Gender, Min BMI
haz.ratio(cr.obj,
c(0, min bmi, mean age, O*min bmi),
c(l, min bmi, mean age, l*min bmi))
hr.ci(cr.obj,
c(0, min bmi, mean age, O*min bmi),
c(l, min bmi, mean age, 1l*min bmi))

## HR Comparing Gender, Average BMI
haz.ratio(cr.obj,
c(0, mean bmi, mean age, O*mean bmi),
c(l, mean bmi, mean age, l*mean bmi))



hr.ci(cr.obj,

c (0, mean bmi, mean age, O*mean bmi)

4
c(l, mean bmi, mean age, l*mean bmi))

## HR Comparing Gender, Max BMI
haz.ratio(cr.obj,
c(0, max bmi, mean age,
c(l, max bmi, mean age,
hr.ci(cr.obj,

0*max bmi),
1*max bmi))

c(0, max bmi, mean age, O*max bmi),

c(l, max bmi, mean age, l*max bmi))

## HR for 5 Unit Increase in BMI,
haz.ratio(cr.obj,
c(0, 5, mean age, 0%*5),
c(0, 0, mean age, 0%*0))
hr.ci(cr.obj,
c(0, 5, mean age, 0%*5),
c(0, 0, mean age, 0*0))

## HR for 5 Unit Increase in BMI,
haz.ratio(cr.obj,
c(l, 5, mean age, 1*5),
c(l, 0, mean age, 1*0))
hr.ci(cr.obj,
c(l, 5, mean age, 1*5),
c(l, 0, mean age, 1*0))

Cox Regression Final Model Summary

Call:

coxph (formula = Surv(time, censor)

age months, data = balance)

n= 2338, number of events= 1203

(95 observations deleted due to

coef
Pr(>lz])
as.factor (gender) 2 -1.0929764
0.001688 **
bmi -0.0531210
3.24e-07 **x*
age months 0.0038782

2e-16 ***

Male

Female

~ as.factor (gender) * bmi +

missingness)

exp (coef) se (coef) z

0.3352173 0.3480523 -3.140

0.9482653 0.0103980 -5.109

1.0038857 0.0001967 19.712
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as.factor (gender)2:bmi 0.0425052 1.0434215 0.0124639 3.410
0.0000649 **x*

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 '.” 0.1 " 1

exp (coef) exp(-coef) lower .95 upper .95
as.factor (gender) 2 0.3352 2.9831 0.1695 0.6631
bmi 0.9483 1.0546 0.9291 0.9678
age months 1.0039 0.9961 1.0035 1.0043
as.factor (gender) 2 :bmi 1.0434 0.9584 1.0182 1.0692

Concordance= 0.67 (se = 0.008 )

Likelihood ratio test= 425.1 on 4 df, p=<2e-16
Wald test 428.6 on 4 df, p=<2e-16
Score (logrank) test 452.8 on 4 df, p=<2e-16

Schoenfeld Residuals Test Output

chisg df P
as.factor (gender) 0.0568 1 0.81
bmi 1.8705 1 0.17
age months 0.3432 1 0.56
as.factor (gender) :bmi 0.1070 1 0.74
GLOBAL 4.2982 4 0.37

Non-parametric Analysis Code

# Non-parametric Estimates
# Creating Weight Category Variable
balance testSweight category <- ifelse(balance test$bmi < 18.5,
"Underweight",

ifelse(balance testS$bmi >= 18.5
& balance testSbmi < 24.9, "Healthy Weight",

ifelse(balance testSbmi

>= 25 & balance test$bmi < 29.9, "Overweight",

"Obese")))
# Overall
KM.obj <- survfit(Surv(time,censor)~1l, conf.type = "none",
data=balance test)
# KM overall survival curve
plot (KM.obj, xlab = "Seconds", ylab = "Survival Probability",

main = "KM Curve overall")
# KM hazard overall
plot.haz (KM.obj)
# KM estimates overall
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summary (KM.ob7j)
mean (balance test$time)

# By Gender (male = 1, female = 2)

KM.obj.Gender <- survfit (Surv(time, censor) ~ gender, data =

balance test)

# KM Survival Curve Gender

plot (KM.obj.Gender, xlab = "Seconds", ylab = "Survival Probability",
main = "KM Curve by Gender", lty = 1:2)

legend (1, .3,c("Males", "Females"),lty=1:2)

# Side by side KM hazard by gender

Males <- subset (balance test, gender == 1)

KM.obj.Males <- survfit(Surv(time, censor) ~ gender, data = Males)

mean (MalesS$Stime)

par (mfrow=c (1,2))

plot.hazNew (KM.obj.Males, title = "Males", ylimits = c(0, .09))
Females <- subset (balance test, gender == 2)
KM.obj.Females <- survfit (Surv(time, censor) ~ gender, data = Females)

mean (FemalesS$Stime)

plot.hazNew (KM.obj.Females, title = "Females", ylimits = c(0, .09))
# KM estimates by Gender

summary (KM.obj.Gender)

# Log-rank Gender

survdiff (Surv(time, censor) ~ gender, data = balance test)

# By BMI category

KM.obj.BMI <- survfit (Surv(time, censor) ~ welght category, data =

balance test)

# KM Survival curve by BMI category

plot (KM.obj.BMI, xlab = "Seconds", ylab = "Survival Probability",
main = "KM Curve by Weight Category", lty = 1:4)

legend (-1, .4,c("Healthy Weight", "Obese" , "Overweight",

"Underweight"),1lty=1:4)

# Side by Side KM hazard by BMI category

par (mfrow=c (2,2))

Underweight <- subset (balance test, weight category == "Underweight")

KM.obj.Underweight <- survfit (Surv(time, censor) ~ weight category,

data = Underweight)

mean (Underweight$time)

HealthyWeight <- subset (balance test, weight category == "Healthy
Weight")

KM.obj.Healthy <- survfit(Surv(time, censor) ~ weight category, data =
HealthyWeight)

mean (HealthyWeight$Stime)
Obese <- subset (balance test, weight category == "Obese")



KM.obj.0Obese <- survfit (Surv(time, censor) ~ weight category, data =
Obese)

mean (ObeseStime)

Overweight <- subset (balance test, weight category == "Overweight")
KM.obj.Overweight <- survfit (Surv(time, censor) ~ weight category,
data = Overweight)

mean (OverweightStime)

plot.hazNew (KM.obj.Underweight, title = "Underweight", ylimits = c (0,
.14))

plot.hazNew (KM.obj.Healthy, title = "Healthy Weight", ylimits = c (O,
.14))

plot.hazNew (KM.obj.Overweight, title = "Overweight", ylimits = c (0O,
.14))

plot.hazNew (KM.obj.Obese, title = "Obese", ylimits = c(0, .14))

# KM estimates by BMI cateogory

summary (KM.obj .BMI)

# Log-rank BMI category

survdiff (Surv(time, censor) ~ weight category, data = balance test)



