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 Introduction 

 In this report we will be performing survival analysis techniques on data from a balance test that was 
 conducted by the US Center for Disease Control (CDC). More specifically, the test was conducted by the 
 CDC from 2001 to 2002 and contains the results for 2238 participants as part of the National Health and 
 Nutrition Examination Survey (NHANES). The data also contains information relating several other tests 
 conducted, body measures, demographics, and questionnaire responses for each participant. The purpose 
 of this experiment, as stated by the CDC, was to provide data for analysis on predictors of balance 
 disorders within the population of U.S. adults. 

 The participants were sampled from the population of all U.S. adults ages 40 or older. Participants were 
 excluded if they felt dizzy, were unable to stand on their own, weighed more than 275 pounds, or could 
 not properly fit into personal safety equipment. Participants were also excluded if they could not stand on 
 their own, were amputees, were experiencing dizziness, or were blind. The balance test administered was 
 the Romberg Test, where four balance tests are administered in order of increasing difficulty. For our 
 analysis, we will be specifically looking at the results of the first trial of the 4th and hardest balance test. 
 This test involved the participant balancing on a foam pad with their eyes closed. 

 The time to event variable can be defined as time until failure in seconds with the test ending after 30 
 seconds. Failure was determined as the subject opening their eyes to maintain balance, moving their arms 
 or feet to maintain balance, or needing assistance to maintain balance. Complete times in the data are 
 represented by individuals who failed the balance test before 30 seconds. Right censored times occur in 
 the data for individuals who passed the balance test and maintained balance for the 30 second duration of 
 the test. Additional variables we included for our analysis include the participants weight, height, BMI, 
 gender, and age in months. 

 Parametric Survival Analysis 

 We fit several parametric models to the balance test results in order to determine a probability distribution 
 which best modeled the time until loss of balance. Each distribution was fit to the data using maximum 
 likelihood estimation to determine parameter estimates. Additionally, we observed the Anderson-Darling 
 (AD) test statistic to measure the goodness of fit of the probability distribution to the data. Since lower 
 values of the AD test statistic represent a better fit to the data, we selected the probability distribution 
 which produced the lowest AD test statistic when fit to the data.  Table 1  contains a list of all the 
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 probability distributions fit to the data and their respective AD statistics. Fitting a three parameter Log 
 Normal distribution to the data resulted in the lowest AD test statistic value of 7295.1. 

 Table 1. Anderson-Darling Test Statistics by Probability Distribution 

 Probability Distribution  Anderson-Darling Test Statistic 

 Weibull  7304.9 
 Exponential  7322.1 
 Log Normal  7299.3 
 Logistic  7327.8 
 Log Logistic  7299.4 
 Smallest Extreme Value  7336.6 
 3 Parameter Log Logistic  7297.3 
 2 Parameter Exponential  7336.3 
 3 Parameter Log Normal  7295.1 
 3 Parameter Weibull  7299.9 

 The resulting estimated survival function using a three parameter log normal distribution can be seen 
 below in  Figure 1.  From the curve we see that the  probability of maintaining balance up to time t begins 
 decreasing after 1 second. Additionally, we see the probability of maintaining balance up to time 
 decreases most quickly between 1 and 5 seconds and decreases at a slower rate between 5 and 30 seconds. 
 Finally, we see that the curve approximates around 46% of participants to pass the balance test meaning 
 they maintained balance up to 30 seconds. 

 Figure 1. Estimated Survival Function for 3 Parameter Log Normal Distribution 

 The estimated hazard curve using a three parameter log normal distribution can be seen below in  Figure 
 2.  From the curve we see the hazard of losing balance  at time t given a participant maintained balanced up 
 to time t rapidly increases from 1 to 2 seconds. From there, the hazard decreases rapidly between 2 to 5 
 seconds, and decreases at a slower rate between 5 and 30 seconds. 
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 Figure 2. Estimated Hazard Function for 3 Parameter Log Normal Distribution 

 The estimated survival functions for both males and females can be seen in  Figure 3  below. From the 
 curves we see that for any time t, the probability of maintaining balance up to time t is higher for males 
 compared to females.  Figure 4  contains the estimated  hazard curves for both males and females. We see 
 the hazard curves follow the same pattern with a rapid increase between 1 and 2 seconds. Additionally, we 
 see that the hazard of losing balance at time t, given an individual has not lost balance up to time t is 
 higher for females compared to males. Finally, we can compare the survival experiences using summary 
 statistics contained in  Table 2.  We see that men tend  to lose balance later than women since the median 
 time to lose balance for men is 25.21 seconds compared to 21.97 seconds for women. 

 Figure 3. Estimated Survival Functions by Gender 
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 Figure 4. Estimated Hazard Functions by Gender 

 Table 2. Survival Summary Statistics by Gender 

 Gender  Mean  Median 

 Male  251.41  25.21 
 Female  215.18  21.97 

 Table 3. BMI to Weight Category Mappings 

 BMI Range  Weight Category 

 <18.5  Underweight 
 18.5 – 24.9  Healthy Weight 
 25.0 – 29.9  Overweight 
 >30.0  Obese 

 We binned different ranges of BMI into different weight categories to create a new categorical variable 
 with 4 levels in the data. These mappings can be found in  Table 3  above. Looking at the estimated 
 survival functions below in  Figure 5,  we see the survival  probabilities differ visually between the four 
 groups. For any time t, the probability of maintaining balance beyond time t is the highest for obese 
 individuals. On the other hand, it is the smallest for underweight individuals for any time t.  Figure  6 
 contains the hazard functions for each of the four weight categories. We see the hazard of losing balance 
 at time t, given an individual has maintained balance up to time t, is extremely high between 1 and 2 
 seconds for underweight individuals compared to the other weight categories. We also observe that the 
 hazard of losing balance at any time t is the lowest for obese individuals compared to the other weight 
 categories. These observations are backed by  Table 4  which contain the summary statistics relating to the 
 different weight categories. We observe that underweight individuals have the shortest medium time until 
 losing balance followed by healthy weight individuals. Obese individuals have the longest median time 
 until balance is lost followed by overweight individuals. 
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 Figure 5. Estimated Survival Functions by Weight Category 

 Figure 6. Estimated Hazard Functions by Weight Category 

 Table 4. Survival Summary Statistics by Weight Category 

 Weight Status  Mean  Median 

 Underweight  651.20  9.87 
 Healthy Weight  167.53  19.07 
 Overweight  150.31  23.11 
 Obese  467.10  37.96 
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 Non-parametric Survival Analysis 

 The estimated Kaplan-Meier survival curve for all participants can be seen below in  Figure 7  . From the 
 curve we see that the probability of maintaining balance up to time t begins to decrease after about 1 
 second. The probability of maintaining balance up to time t decreases the quickest between 1 and 5 
 seconds, and then begins to taper off from between 5 and 30 seconds. The curve approximates about 48% 
 of participants to pass the balance test, which means successfully balancing for the full 30 seconds. 

 Figure 7. Estimated Kaplan-Meier Survival Curve for all Participants 

 Figure 8. Estimated Kaplan-Meier Hazard Function for all Participants 

 The estimated Kaplan-Meier hazard function for all participants is displayed above in  Figure 8  . From the 
 curve, we see that given a participant has maintained balance up to time t, the probability of losing 
 balance per a specific interval of time quickly increases from 1 to 2 seconds and is at its highest between 
 2 and 6 seconds. From there, the Kaplan-Meier estimate for hazard decreases promptly between 5 to 
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 about 15 seconds. Interestingly see a spike in the estimated hazard at 15 seconds with a slow decrease 
 afterwards between 16 and 30 seconds. 

 Table 5. Survival Summary Statistics by Gender Category 

 Gender  Mean  Median 

 Male  18.64  24 
 Female  17.92  18 

 Figure 9. Estimated Kaplan-Meier Survival Curve by Gender 

 From  Figure 9  above we see that from 0 to 5 seconds, the probability of maintaining balance up to time t 
 is almost equal for males and females. From 5 to 30 seconds, the probability of maintaining balance up to 
 time t is higher for males compared to females. This phenomenon is further backed up by the summary 
 statistics found in  Table 5  . The mean time to failure for men is 18.64 seconds compared to 17.92 for 
 females indicating participants who are male tend to maintain balance longer than participants who are 
 female. In  Figure 10  below, the estimated Kaplan-Meier Hazard functions based on gender are similar for 
 both males and females. Given a participant maintained balance up to time t, the probability of losing 
 balance per a specific time interval quickly increases from 1 to 4 seconds for both males and females. The 
 estimated hazard then speedily decreased, with spikes at 10, 15, 20, and 25 seconds for males. 
 Additionally, the estimated hazard for females decreases quickly at 5 seconds, with a noticeable spike at 
 15 seconds. 
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 Figure 10. Estimated Kaplan-Meier Hazard Functions by Gender 

 Table 7. Log-Rank Test for Gender 

 Log-Rank Test Statistic  DF  p-value 

 1.9  1  .2 

 Table 7  contains the results for a log-rank test which is the formal test for determining whether the 
 survival experiences differ between two groups. More specifically, the test was conducted to determine 
 whether there are significant differences in the survival experiences between men and women. The null 
 hypothesis is that the probability of maintaining one’s balance beyond time t is the same regardless of 
 gender. Based on the rather low test statistic of 1.9 and high p-value of 0.2 for this log-rank test, we fail to 
 reject this null hypothesis at any reasonable significance level. Therefore, there is not enough evidence to 
 conclude that the probability of a participant maintaining their balance beyond time t differs for any time t 
 between males and females. 

 Table 6. Survival Summary Statistics by Weight Category 

 Weight Status  Mean  Median 

 Underweight  13.53  8.5 
 Healthy Weight  16.83  14 
 Overweight  18.23  19 
 Obese  20.24  30 
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 Figure 11. Estimated Kaplan-Meier Hazard Functions by Weight Classification 

 We were able to model the survival experiences of different weight categories using Kaplan-Meier curves. 
 The categories were created by binning the BMI variable. (See  Table 3)  A plot containing the overlaid 
 curves for each category can be found above in  Figure 11.  Much like the estimated survival curves using 
 parametric methods, the plot above shows that for any time t, the probability of maintaining balance 
 beyond time t is the highest for obese individuals. On the other hand, for any time t, the probability of 
 maintaining balance beyond time t is the lowest for underweight individuals. This is further backed up by 
 Table 6  which contains summary statistics for each weight category. We see that obese individuals have 
 the highest mean time until balance is lost, that being 20.24 seconds, while underweight individuals have 
 the lowest, 13.53 seconds. 

 Figure 12. Estimated Kaplan-Meier Hazard Functions by Weight Classification 

 The estimated Kaplan-Meier hazard functions by weight classification are shown above in  Figure  12. 
 Given an individual has not lost balance up to time t, the conditional probability of losing balance per an 
 interval of time is similar for healthy weight, overweight, and obese individuals. For these participants, 
 the estimated hazard increases for the first five seconds, after which the hazard of losing balance at time t 
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 seconds gradually decreases for the remainder of the time period.  The estimated hazard function for 
 participants who are underweight deviates from this trend, and there are notably three large spikes at 
 approximately the first three seconds, around 5 seconds, and at about 13 seconds. However, it is important 
 to note that a very small proportion of the sample was considered to be underweight, so there is less data 
 for inference on this group. 

 Table 8. Log-Rank Test for Weight Classification 

 Log-Rank Test Statistic  DF  p-value 

 34.1  3  <.0001 

 We performed a log-rank test to determine whether the survival experiences differ between the different 
 weight categories. The results of this test can be found above in  Table 8.  The null hypothesis is that the 
 probability of a participant maintaining their balance beyond time t seconds is the same regardless of 
 weight category for any time t.  Based on the high test statistic for this test of 34.1, and very small p-value 
 of <.0001, we reject this null hypothesis at any reasonable level of significance. There is very strong 
 evidence to conclude that the survival experiences for the different weight categories differ significantly 
 for at least some time t. 

 Regression Analysis 

 In order to examine the relationship between the hazard of losing balance and the variables age, gender, 
 BMI, weight and height, we fit Cox regression models to the data. After iterating through multiple 
 models, our final Cox regression model includes age and the interaction between gender and BMI, and 
 excludes weight and height. 

 Table 9: Final Model Parameter Estimates and Significance 

 Predictor  Parameter 
 Estimate 
 (  ) β

^

 𝑒 β
^  Standard 

 Error 
 Wald Test 
 P-Value 

 95% Confidence 
 Interval for  𝑒 β

 Lower 
 Bound 

 Upper 
 Bound 

 Gender (Female)  -1.093  0.334  0.348  0.00169  0.1695  0.6631 
 BMI  -0.0531  0.948  0.0104  3.24e-07  0.9291  0.9678 
 Age (Months)  0.00388  1.004  0.000197  2e-16  1.0035  1.0043 
 Gender * BMI  0.0425  1.043  0.0125  0.000649  1.0182  1.0692 

 At a significance level of 0.01, based on the extremely small p-values from Wald tests performed on each 
 of the individual predictors, we can conclude that each of these predictors are significantly associated 
 with the hazard of losing balance, after adjusting for the remaining predictors. Furthermore, based on the 
 small p-value for the likelihood ratio test, we can conclude that age and the interaction between gender 
 and BMI are jointly significantly associated with the hazard of losing balance. 
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 In order to use Cox regression, the data must conform to the proportional hazards assumption. We 
 examined LOWESS curves fit to the Schoenfeld residuals as a factor of time, as well as performing a 
 formal Schoenfeld residuals test, in order to determine if the assumption is fulfilled. 

 Figure 13: Schoenfeld Residuals for Cox Regression Predictors as a Factor of Time 

 At a significance level of 0.01, none of the Schoenfeld residual tests on the predictors yielded a p-value 
 less than or equal to 0.01. Based on both observing flat horizontal LOWESS curves for the Schoenfeld 
 residuals as a function of time for each predictor, as well as the high p-values for the Schoenfeld residuals 
 test test, we can conclude that the proportional hazards assumption has not been violated for any of the 
 predictors included in this model. It is therefore appropriate to use Cox regression to analyze the joint 
 relationship between each of these predictors and the risk of losing balance during the balance test. No 
 outlying values were removed from the analysis. 

 In order to investigate how the effect of gender on the hazard of losing balance may change depending on 
 BMI due to the interaction between gender and BMI, we examined the hazard ratio for each of the 
 scenarios seen in Table X below. 

 Table 10: Estimated Hazard Ratios between Genders, for Different BMI values, Adjusting for Age 

 Hazard Ratio (HR) Description  Estimated HR  95% Confidence Interval for HR 

 Lower Bound  Upper Bound 

 Male with Sample Minimum BMI (15.8) 
 vs. Female with Sample Minimum BMI, 
 Adjusting for Age 

 1.524  0.840  2.765 

 Male with Sample Average BMI 
 (28.139) vs. Female with Sample 

 0.902  0.451  1.795 
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 Average BMI, Adjusting for Age 

 Male with Sample Maximum BMI 
 (54.65) vs. Female with Sample 
 Maximum BMI, Adjusting for Age 

 0.292  0.0915  0.934 

 The risk of losing balance is estimated to be 52% higher for male balance test participants with sample 
 minimum BMI (15.80) compared to female balance test participants of sample minimum BMI, after 
 adjusting for age. Furthermore, we are 95% confident that the risk of losing balance for male balance test 
 participants of sample minimum BMI is between 16% lower to 176% higher than the risk of losing 
 balance for female balance test participants of sample minimum BMI, after adjusting for age. 

 The risk of losing balance is estimated to be 10% lower for male balance test participants with sample 
 average BMI (28.14) compared to female balance test participants of sample average BMI, after adjusting 
 for age. Furthermore, we are 95% confident that the risk of losing balance for male balance test 
 participants of sample average BMI is between 55% lower to 79% higher than the risk of losing balance 
 for female balance test participants of sample average BMI, after adjusting for age. 

 The risk of losing balance is estimated to be 71% lower for male balance test participants with sample 
 maximum BMI (54.65) compared to female balance test participants of sample maximum BMI, after 
 adjusting for age. Furthermore, we are 95% confident that the risk of losing balance for male balance test 
 participants of sample maximum BMI is between 7% to 91% lower than the risk of losing balance for 
 female balance test participants of sample maximum BMI, after adjusting for age. 

 Between all three comparisons of gender (at sample minimum BMI, average BMI, and maximum BMI), 
 we can see how the relationship between the hazard of losing balance and gender changes depending on 
 BMI in this model. For the sample minimum BMI, the risk of losing balance is estimated to be higher for 
 male participants than female participants while for the sample maximum BMI, the risk of losing balance 
 is estimated to be lower for male participants than female participants, after adjusting for age. Because we 
 observe that after adjusting for age, the 95% confidence intervals for the true hazard ratio between male 
 and female participants at sample minimum BMI and sample average BMI both capture the value of 1 
 while the 95% confidence interval for the true hazard ratio between male and female participants at 
 sample maximum BMI does not, there is evidence for a difference in true hazard ratio between genders at 
 higher BMI but not lower BMI, after adjusting for age. 

 We additionally investigated how the relationship between BMI and the hazard of losing balance differed 
 by gender. 

 Table 11: Estimated Hazard Ratio for 5 Unit Increase in BMI, by Gender, Adjusting for Age 

 Hazard Ratio (HR) Description  Estimated HR  95% Confidence Interval for HR 

 Lower Bound  Upper Bound 
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 5 Unit Increase in BMI, Male, 
 Adjusting for Age 

 0.767  0.692  0.849 

 5 Unit Increase in BMI, Female, 
 Adjusting for Age 

 0.948  0.839  1.072 

 The risk of losing balance is estimated to decrease by 23% for every 5 unit increase in BMI in male 
 balance test subjects, after adjusting for age. Furthermore, we are 95% confident that the risk of losing 
 balance decreases by between 15% to 31% for every 5 unit increase in BMI in male balance test subjects, 
 after adjusting for age. 

 The risk of losing balance is estimated to decrease by 5% for every 5 unit increase in BMI in female 
 balance test subjects, after adjusting for age. Furthermore, we are 95% confident that the risk of losing 
 balance is between 16% lower to 7% higher for every 5 unit increase in BMI in male balance test 
 subjects, after adjusting for age. 

 Between both hazard ratio analyses, male and female, for a 5 unit BMI increase, we can see that for both 
 genders, a 5 unit increase in BMI corresponds to an estimated decrease in risk of losing balance at any 
 time during the balance test. However, the 95% confidence interval for a 5 unit increase in BMI for 
 female participants captures the value 1, which corresponds to a percent difference of 0% and indicates a 
 lack of evidence that BMI is associated with the hazard of losing balance for female participants. On the 
 other hand, the 95% confidence interval for a 5 unit increase in BMI for male participants does not 
 capture the value 1, indicating evidence that BMI is associated with the hazard of losing balance for male 
 participants. 

 Conclusion 

 Based on our survival analysis using parametric, nonparametric, and regression methods, we identified 
 significant trends and patterns in time until losing balance during the fourth trial of the NHANES balance 
 test. In general, for the population of healthy and unimpaired U.S. adults ages 40 and over, the greatest 
 estimated risk of losing balance during the balance test occurs within the first five seconds. Survival times 
 for the balance test may be best described by a three-parameter lognormal distribution. These findings 
 imply that adults with poor balance might be quickly distinguished by an extremely short survival time. 

 Furthermore, we identified differences in balance test survival experiences for varying populations based 
 on gender, height, weight, age in months, and BMI. Specifically, in our parametric and nonparametric 
 survival analyses, we found that survival experiences differ considerably between BMI classes. For any 
 time t, individuals classified as obese or overweight were estimated to be at lower risk for losing balance 
 and had a higher estimated probability of remaining balanced past that time, compared to healthy or 
 underweight individuals. Applying a Cox regression analysis with a model involving age and an 
 interaction between gender and BMI revealed that this relationship between risk of losing balance and 
 BMI depends on gender, with more significant differences in estimated risk of losing balance between 
 high and low BMI occurring for male participants than female participants, after controlling for age. 
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 While there may not be significantly different survival experiences between male and female gendered 
 participants, after controlling for age, the relationship between risk of losing balance significantly 
 depends on gender. 

 Overall, this survival analysis revealed that BMI is a significant factor in survival experience for 
 individuals undergoing balance tests. As a result, it is important to keep BMI under consideration when 
 evaluating an individual for balance disorders. Because adults with higher BMI are estimated to have a 
 higher probability of remaining balanced beyond any given time compared to adults with lower BMI, it 
 may be more difficult to diagnose balance disorders and conditions where loss of balance is an important 
 symptom for individuals with higher BMI. 
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 Appendix 

 Parametric Analysis Minitab Output 



 16 



 17 

 Cox Regression Code 

 # Setup 
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 library(survival) 
 library(tidyverse) 

 balance <- read.csv("balance_test.csv") 
 balance 

 cr.obj <- coxph(Surv(time, censor)~as.factor(gender)*bmi+age_months, 
 data = balance) 

 summary(cr.obj) 

 # Schoenfeld Residuals Analysis 
 schoen <- residuals(cr.obj, type="schoenfeld") 

 balance2 <- balance %>% 
 select(time, censor, gender, bmi, age_months) %>% 
 drop_na() 

 comp.times <-  balance2 %>% 
 filter(censor != 0) %>% 
 pull(time) 

 par(mfrow=c(2,2)) 

 ## Schoenfeld Residuals vs Gender 
 plot(comp.times, schoen[,1], xlab="Time", 

 ylab="Schoenfeld Residuals", main="Predictor: Gender") 
 smooth.sres <- lowess(comp.times, schoen[,1]) 
 lines(smooth.sres$x, smooth.sres$y, lty=1) 

 ## Schoenfeld Residuals vs BMI 
 plot(comp.times, schoen[,2], xlab="Time", 

 ylab="Schoenfeld Residuals", main="Predictor: BMI") 
 smooth.sres <- lowess(comp.times, schoen[,2]) 
 lines(smooth.sres$x, smooth.sres$y, lty=1) 

 ## Schoenfeld Residuals vs Age in Months 
 plot(comp.times, schoen[,3], xlab="Time", 

 ylab="Schoenfeld Residuals", main="Predictor: Age in Months") 
 smooth.sres <- lowess(comp.times, schoen[,3]) 
 lines(smooth.sres$x, smooth.sres$y, lty=1) 

 ## Schoenfeld Residuals vs Gender x BMI 
 plot(comp.times, schoen[,4], xlab="Time", 

 ylab="Schoenfeld Residuals", main="Predictor: Gender*BMI") 
 smooth.sres <- lowess(comp.times, schoen[,4]) 
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 lines(smooth.sres$x, smooth.sres$y, lty=1) 

 ## Schoenfeld Residuals Test 
 cox.zph(cr.obj, transform="log") 

 # Hazard Ratios 
 min_age <- min(balance2$age_months) 
 mean_age <- mean(balance2$age_months) 
 max_age <- max(balance2$age_months) 

 ## Function to calculate estimated hazard ratio 
 haz.ratio <- function(cr.obj, v1, v2) { 

 coefs <- cr.obj$coefficients 
 hr <- exp(sum(coefs * v1)) / exp(sum(coefs * v2)) 
 return(hr) 

 } 

 ## Function to calculate hazard ratio confidence interval 
 ## Verified correctness by comparing with summary(cr.obj) output 
 hr.ci <- function(cr.obj, v1, v2) { 

 v <- v1 - v2 
 varcov <- cr.obj$var 
 varcov[lower.tri(varcov)] <- 0 # Make sure we don't repeat 

 covariances 
 var <- sum(v[1] * v * varcov[1,]) + 

 sum(v[2] * v * varcov[2,]) + 
 sum(v[3] * v * varcov[3,]) + 
 sum(v[4] * v * varcov[4,]) 

 se <- sqrt(var) 
 loghr <- log(haz.ratio(cr.obj, v1, v2)) 
 return(exp(loghr + c(-1.96, 1.96)*se)) 

 } 

 ## HR Comparing Gender, Min BMI 
 haz.ratio(cr.obj, 

 c(0, min_bmi, mean_age, 0*min_bmi), 
 c(1, min_bmi, mean_age, 1*min_bmi)) 

 hr.ci(cr.obj, 
 c(0, min_bmi, mean_age, 0*min_bmi), 
 c(1, min_bmi, mean_age, 1*min_bmi)) 

 ## HR Comparing Gender, Average BMI 
 haz.ratio(cr.obj, 

 c(0, mean_bmi, mean_age, 0*mean_bmi), 
 c(1, mean_bmi, mean_age, 1*mean_bmi)) 
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 hr.ci(cr.obj, 
 c(0, mean_bmi, mean_age, 0*mean_bmi), 
 c(1, mean_bmi, mean_age, 1*mean_bmi)) 

 ## HR Comparing Gender, Max BMI 
 haz.ratio(cr.obj, 

 c(0, max_bmi, mean_age, 0*max_bmi), 
 c(1, max_bmi, mean_age, 1*max_bmi)) 

 hr.ci(cr.obj, 
 c(0, max_bmi, mean_age, 0*max_bmi), 
 c(1, max_bmi, mean_age, 1*max_bmi)) 

 ## HR for 5 Unit Increase in BMI, Male 
 haz.ratio(cr.obj, 

 c(0, 5, mean_age, 0*5), 
 c(0, 0, mean_age, 0*0)) 

 hr.ci(cr.obj, 
 c(0, 5, mean_age, 0*5), 
 c(0, 0, mean_age, 0*0)) 

 ## HR for 5 Unit Increase in BMI, Female 
 haz.ratio(cr.obj, 

 c(1, 5, mean_age, 1*5), 
 c(1, 0, mean_age, 1*0)) 

 hr.ci(cr.obj, 
 c(1, 5, mean_age, 1*5), 
 c(1, 0, mean_age, 1*0)) 

 Cox Regression Final Model Summary 

 Call: 
 coxph(formula = Surv(time, censor) ~ as.factor(gender) * bmi + 

 age_months, data = balance) 

 n= 2338, number of events= 1203 
 (95 observations deleted due to missingness) 

 coef  exp(coef)   se(coef)      z 
 Pr(>|z|) 
 as.factor(gender)2     -1.0929764  0.3352173  0.3480523 -3.140 
 0.001688 ** 
 bmi                    -0.0531210  0.9482653  0.0103980 -5.109 
 3.24e-07 *** 
 age_months              0.0038782  1.0038857  0.0001967 19.712  < 
 2e-16 *** 
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 as.factor(gender)2:bmi  0.0425052  1.0434215  0.0124639  3.410 
 0.000649 *** 
 --- 
 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 exp(coef) exp(-coef) lower .95 upper .95 
 as.factor(gender)2        0.3352     2.9831    0.1695    0.6631 
 bmi                       0.9483     1.0546    0.9291    0.9678 
 age_months                1.0039     0.9961    1.0035    1.0043 
 as.factor(gender)2:bmi    1.0434     0.9584    1.0182    1.0692 

 Concordance= 0.67  (se = 0.008 ) 
 Likelihood ratio test= 425.1  on 4 df,   p=<2e-16 
 Wald test            = 428.6  on 4 df,   p=<2e-16 
 Score (logrank) test = 452.8  on 4 df,   p=<2e-16 

 Schoenfeld Residuals Test Output 

 chisq df    p 
 as.factor(gender)     0.0568  1 0.81 
 bmi                   1.8705  1 0.17 
 age_months            0.3432  1 0.56 
 as.factor(gender):bmi 0.1070  1 0.74 
 GLOBAL                4.2982  4 0.37 

 Non-parametric Analysis Code 

 # Non-parametric Estimates 
 # Creating Weight Category Variable 
 balance_test$weight_category <- ifelse(balance_test$bmi < 18.5, 
 "Underweight", 

 ifelse(balance_test$bmi >= 18.5 
 & balance_test$bmi < 24.9, "Healthy Weight", 

 ifelse(balance_test$bmi 
 >= 25 & balance_test$bmi < 29.9, "Overweight", 

 "Obese"))) 
 # Overall 
 KM.obj <- survfit(Surv(time,censor)~1,  conf.type = "none", 
 data=balance_test) 
 # KM overall survival curve 
 plot(KM.obj, xlab = "Seconds", ylab = "Survival Probability", 

 main = "KM Curve overall") 
 # KM hazard overall 
 plot.haz(KM.obj) 
 # KM estimates overall 
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 summary(KM.obj) 
 mean(balance_test$time) 

 # By Gender (male = 1, female = 2) 
 KM.obj.Gender <- survfit(Surv(time, censor) ~ gender, data = 
 balance_test) 
 # KM Survival Curve Gender 
 plot(KM.obj.Gender, xlab = "Seconds", ylab = "Survival Probability", 

 main = "KM Curve by Gender", lty = 1:2) 
 legend(1,.3,c("Males", "Females"),lty=1:2) 
 # Side by side KM hazard by gender 
 Males <- subset(balance_test, gender == 1) 
 KM.obj.Males <- survfit(Surv(time, censor) ~ gender, data = Males) 
 mean(Males$time) 
 par(mfrow=c(1,2)) 
 plot.hazNew(KM.obj.Males, title = "Males", ylimits = c(0, .09)) 
 Females <- subset(balance_test, gender == 2) 
 KM.obj.Females <- survfit(Surv(time, censor) ~ gender, data = Females) 
 mean(Females$time) 
 plot.hazNew(KM.obj.Females, title = "Females", ylimits = c(0, .09)) 
 # KM estimates by Gender 
 summary(KM.obj.Gender) 
 # Log-rank Gender 
 survdiff(Surv(time, censor) ~ gender, data = balance_test) 

 # By BMI category 
 KM.obj.BMI <- survfit(Surv(time, censor) ~ weight_category, data = 
 balance_test) 
 # KM Survival curve by BMI category 
 plot(KM.obj.BMI, xlab = "Seconds", ylab = "Survival Probability", 

 main = "KM Curve by Weight Category", lty = 1:4) 
 legend(-1,.4,c("Healthy Weight","Obese" , "Overweight", 
 "Underweight"),lty=1:4) 
 # Side by Side KM hazard by BMI category 
 par(mfrow=c(2,2)) 
 Underweight <- subset(balance_test, weight_category == "Underweight") 
 KM.obj.Underweight <- survfit(Surv(time, censor) ~ weight_category, 
 data = Underweight) 
 mean(Underweight$time) 
 HealthyWeight <- subset(balance_test, weight_category == "Healthy 
 Weight") 
 KM.obj.Healthy <- survfit(Surv(time, censor) ~ weight_category, data = 
 HealthyWeight) 
 mean(HealthyWeight$time) 
 Obese <- subset(balance_test, weight_category == "Obese") 
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 KM.obj.Obese <- survfit(Surv(time, censor) ~ weight_category, data = 
 Obese) 
 mean(Obese$time) 
 Overweight <- subset(balance_test, weight_category == "Overweight") 
 KM.obj.Overweight <- survfit(Surv(time, censor) ~ weight_category, 
 data = Overweight) 
 mean(Overweight$time) 
 plot.hazNew(KM.obj.Underweight, title = "Underweight", ylimits = c(0, 
 .14)) 
 plot.hazNew(KM.obj.Healthy, title = "Healthy Weight", ylimits = c(0, 
 .14)) 
 plot.hazNew(KM.obj.Overweight, title = "Overweight", ylimits = c(0, 
 .14)) 
 plot.hazNew(KM.obj.Obese, title = "Obese", ylimits = c(0, .14)) 
 # KM estimates by BMI cateogory 
 summary(KM.obj.BMI) 
 # Log-rank BMI category 
 survdiff(Surv(time, censor) ~ weight_category, data = balance_test) 


