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‭Introduction‬

‭In this report we will be performing survival analysis techniques on data from a balance test that was‬
‭conducted by the US Center for Disease Control (CDC). More specifically, the test was conducted by the‬
‭CDC from 2001 to 2002 and contains the results for 2238 participants as part of the National Health and‬
‭Nutrition Examination Survey (NHANES). The data also contains information relating several other tests‬
‭conducted, body measures, demographics, and questionnaire responses for each participant. The purpose‬
‭of this experiment, as stated by the CDC, was to provide data for analysis on predictors of balance‬
‭disorders within the population of U.S. adults.‬

‭The participants were sampled from the population of all U.S. adults ages 40 or older. Participants were‬
‭excluded if they felt dizzy, were unable to stand on their own, weighed more than 275 pounds, or could‬
‭not properly fit into personal safety equipment. Participants were also excluded if they could not stand on‬
‭their own, were amputees, were experiencing dizziness, or were blind. The balance test administered was‬
‭the Romberg Test, where four balance tests are administered in order of increasing difficulty. For our‬
‭analysis, we will be specifically looking at the results of the first trial of the 4th and hardest balance test.‬
‭This test involved the participant balancing on a foam pad with their eyes closed.‬

‭The time to event variable can be defined as time until failure in seconds with the test ending after 30‬
‭seconds. Failure was determined as the subject opening their eyes to maintain balance, moving their arms‬
‭or feet to maintain balance, or needing assistance to maintain balance. Complete times in the data are‬
‭represented by individuals who failed the balance test before 30 seconds. Right censored times occur in‬
‭the data for individuals who passed the balance test and maintained balance for the 30 second duration of‬
‭the test. Additional variables we included for our analysis include the participants weight, height, BMI,‬
‭gender, and age in months.‬

‭Parametric Survival Analysis‬

‭We fit several parametric models to the balance test results in order to determine a probability distribution‬
‭which best modeled the time until loss of balance. Each distribution was fit to the data using maximum‬
‭likelihood estimation to determine parameter estimates. Additionally, we observed the Anderson-Darling‬
‭(AD) test statistic to measure the goodness of fit of the probability distribution to the data. Since lower‬
‭values of the AD test statistic represent a better fit to the data, we selected the probability distribution‬
‭which produced the lowest AD test statistic when fit to the data.‬‭Table 1‬‭contains a list of all the‬
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‭probability distributions fit to the data and their respective AD statistics. Fitting a three parameter Log‬
‭Normal distribution to the data resulted in the lowest AD test statistic value of 7295.1.‬

‭Table 1. Anderson-Darling Test Statistics by Probability Distribution‬

‭Probability Distribution‬ ‭Anderson-Darling Test Statistic‬

‭Weibull‬ ‭7304.9‬
‭Exponential‬ ‭7322.1‬
‭Log Normal‬ ‭7299.3‬
‭Logistic‬ ‭7327.8‬
‭Log Logistic‬ ‭7299.4‬
‭Smallest Extreme Value‬ ‭7336.6‬
‭3 Parameter Log Logistic‬ ‭7297.3‬
‭2 Parameter Exponential‬ ‭7336.3‬
‭3 Parameter Log Normal‬ ‭7295.1‬
‭3 Parameter Weibull‬ ‭7299.9‬

‭The resulting estimated survival function using a three parameter log normal distribution can be seen‬
‭below in‬‭Figure 1.‬‭From the curve we see that the‬‭probability of maintaining balance up to time t begins‬
‭decreasing after 1 second. Additionally, we see the probability of maintaining balance up to time‬
‭decreases most quickly between 1 and 5 seconds and decreases at a slower rate between 5 and 30 seconds.‬
‭Finally, we see that the curve approximates around 46% of participants to pass the balance test meaning‬
‭they maintained balance up to 30 seconds.‬

‭Figure 1. Estimated Survival Function for 3 Parameter Log Normal Distribution‬

‭The estimated hazard curve using a three parameter log normal distribution can be seen below in‬‭Figure‬
‭2.‬‭From the curve we see the hazard of losing balance‬‭at time t given a participant maintained balanced up‬
‭to time t rapidly increases from 1 to 2 seconds. From there, the hazard decreases rapidly between 2 to 5‬
‭seconds, and decreases at a slower rate between 5 and 30 seconds.‬
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‭Figure 2. Estimated Hazard Function for 3 Parameter Log Normal Distribution‬

‭The estimated survival functions for both males and females can be seen in‬‭Figure 3‬‭below. From the‬
‭curves we see that for any time t, the probability of maintaining balance up to time t is higher for males‬
‭compared to females.‬‭Figure 4‬‭contains the estimated‬‭hazard curves for both males and females. We see‬
‭the hazard curves follow the same pattern with a rapid increase between 1 and 2 seconds. Additionally, we‬
‭see that the hazard of losing balance at time t, given an individual has not lost balance up to time t is‬
‭higher for females compared to males. Finally, we can compare the survival experiences using summary‬
‭statistics contained in‬‭Table 2.‬‭We see that men tend‬‭to lose balance later than women since the median‬
‭time to lose balance for men is 25.21 seconds compared to 21.97 seconds for women.‬

‭Figure 3. Estimated Survival Functions by Gender‬
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‭Figure 4. Estimated Hazard Functions by Gender‬

‭Table 2. Survival Summary Statistics by Gender‬

‭Gender‬ ‭Mean‬ ‭Median‬

‭Male‬ ‭251.41‬ ‭25.21‬
‭Female‬ ‭215.18‬ ‭21.97‬

‭Table 3. BMI to Weight Category Mappings‬

‭BMI Range‬ ‭Weight Category‬

‭<18.5‬ ‭Underweight‬
‭18.5 – 24.9‬ ‭Healthy Weight‬
‭25.0 – 29.9‬ ‭Overweight‬
‭>30.0‬ ‭Obese‬

‭We binned different ranges of BMI into different weight categories to create a new categorical variable‬
‭with 4 levels in the data. These mappings can be found in‬‭Table 3‬‭above. Looking at the estimated‬
‭survival functions below in‬‭Figure 5,‬‭we see the survival‬‭probabilities differ visually between the four‬
‭groups. For any time t, the probability of maintaining balance beyond time t is the highest for obese‬
‭individuals. On the other hand, it is the smallest for underweight individuals for any time t.‬‭Figure‬‭6‬
‭contains the hazard functions for each of the four weight categories. We see the hazard of losing balance‬
‭at time t, given an individual has maintained balance up to time t, is extremely high between 1 and 2‬
‭seconds for underweight individuals compared to the other weight categories. We also observe that the‬
‭hazard of losing balance at any time t is the lowest for obese individuals compared to the other weight‬
‭categories. These observations are backed by‬‭Table 4‬‭which contain the summary statistics relating to the‬
‭different weight categories. We observe that underweight individuals have the shortest medium time until‬
‭losing balance followed by healthy weight individuals. Obese individuals have the longest median time‬
‭until balance is lost followed by overweight individuals.‬
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‭Figure 5. Estimated Survival Functions by Weight Category‬

‭Figure 6. Estimated Hazard Functions by Weight Category‬

‭Table 4. Survival Summary Statistics by Weight Category‬

‭Weight Status‬ ‭Mean‬ ‭Median‬

‭Underweight‬ ‭651.20‬ ‭9.87‬
‭Healthy Weight‬ ‭167.53‬ ‭19.07‬
‭Overweight‬ ‭150.31‬ ‭23.11‬
‭Obese‬ ‭467.10‬ ‭37.96‬
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‭Non-parametric Survival Analysis‬

‭The estimated Kaplan-Meier survival curve for all participants can be seen below in‬‭Figure 7‬‭. From the‬
‭curve we see that the probability of maintaining balance up to time t begins to decrease after about 1‬
‭second. The probability of maintaining balance up to time t decreases the quickest between 1 and 5‬
‭seconds, and then begins to taper off from between 5 and 30 seconds. The curve approximates about 48%‬
‭of participants to pass the balance test, which means successfully balancing for the full 30 seconds.‬

‭Figure 7. Estimated Kaplan-Meier Survival Curve for all Participants‬

‭Figure 8. Estimated Kaplan-Meier Hazard Function for all Participants‬

‭The estimated Kaplan-Meier hazard function for all participants is displayed above in‬‭Figure 8‬‭. From the‬
‭curve, we see that given a participant has maintained balance up to time t, the probability of losing‬
‭balance per a specific interval of time quickly increases from 1 to 2 seconds and is at its highest between‬
‭2 and 6 seconds. From there, the Kaplan-Meier estimate for hazard decreases promptly between 5 to‬
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‭about 15 seconds. Interestingly see a spike in the estimated hazard at 15 seconds with a slow decrease‬
‭afterwards between 16 and 30 seconds.‬

‭Table 5. Survival Summary Statistics by Gender Category‬

‭Gender‬ ‭Mean‬ ‭Median‬

‭Male‬ ‭18.64‬ ‭24‬
‭Female‬ ‭17.92‬ ‭18‬

‭Figure 9. Estimated Kaplan-Meier Survival Curve by Gender‬

‭From‬‭Figure 9‬‭above we see that from 0 to 5 seconds, the probability of maintaining balance up to time t‬
‭is almost equal for males and females. From 5 to 30 seconds, the probability of maintaining balance up to‬
‭time t is higher for males compared to females. This phenomenon is further backed up by the summary‬
‭statistics found in‬‭Table 5‬‭. The mean time to failure for men is 18.64 seconds compared to 17.92 for‬
‭females indicating participants who are male tend to maintain balance longer than participants who are‬
‭female. In‬‭Figure 10‬‭below, the estimated Kaplan-Meier Hazard functions based on gender are similar for‬
‭both males and females. Given a participant maintained balance up to time t, the probability of losing‬
‭balance per a specific time interval quickly increases from 1 to 4 seconds for both males and females. The‬
‭estimated hazard then speedily decreased, with spikes at 10, 15, 20, and 25 seconds for males.‬
‭Additionally, the estimated hazard for females decreases quickly at 5 seconds, with a noticeable spike at‬
‭15 seconds.‬
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‭Figure 10. Estimated Kaplan-Meier Hazard Functions by Gender‬

‭Table 7. Log-Rank Test for Gender‬

‭Log-Rank Test Statistic‬ ‭DF‬ ‭p-value‬

‭1.9‬ ‭1‬ ‭.2‬

‭Table 7‬‭contains the results for a log-rank test which is the formal test for determining whether the‬
‭survival experiences differ between two groups. More specifically, the test was conducted to determine‬
‭whether there are significant differences in the survival experiences between men and women. The null‬
‭hypothesis is that the probability of maintaining one’s balance beyond time t is the same regardless of‬
‭gender. Based on the rather low test statistic of 1.9 and high p-value of 0.2 for this log-rank test, we fail to‬
‭reject this null hypothesis at any reasonable significance level. Therefore, there is not enough evidence to‬
‭conclude that the probability of a participant maintaining their balance beyond time t differs for any time t‬
‭between males and females.‬

‭Table 6. Survival Summary Statistics by Weight Category‬

‭Weight Status‬ ‭Mean‬ ‭Median‬

‭Underweight‬ ‭13.53‬ ‭8.5‬
‭Healthy Weight‬ ‭16.83‬ ‭14‬
‭Overweight‬ ‭18.23‬ ‭19‬
‭Obese‬ ‭20.24‬ ‭30‬
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‭Figure 11. Estimated Kaplan-Meier Hazard Functions by Weight Classification‬

‭We were able to model the survival experiences of different weight categories using Kaplan-Meier curves.‬
‭The categories were created by binning the BMI variable. (See‬‭Table 3)‬‭A plot containing the overlaid‬
‭curves for each category can be found above in‬‭Figure 11.‬‭Much like the estimated survival curves using‬
‭parametric methods, the plot above shows that for any time t, the probability of maintaining balance‬
‭beyond time t is the highest for obese individuals. On the other hand, for any time t, the probability of‬
‭maintaining balance beyond time t is the lowest for underweight individuals. This is further backed up by‬
‭Table 6‬‭which contains summary statistics for each weight category. We see that obese individuals have‬
‭the highest mean time until balance is lost, that being 20.24 seconds, while underweight individuals have‬
‭the lowest, 13.53 seconds.‬

‭Figure 12. Estimated Kaplan-Meier Hazard Functions by Weight Classification‬

‭The estimated Kaplan-Meier hazard functions by weight classification are shown above in‬‭Figure‬‭12.‬
‭Given an individual has not lost balance up to time t, the conditional probability of losing balance per an‬
‭interval of time is similar for healthy weight, overweight, and obese individuals. For these participants,‬
‭the estimated hazard increases for the first five seconds, after which the hazard of losing balance at time t‬
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‭seconds gradually decreases for the remainder of the time period.  The estimated hazard function for‬
‭participants who are underweight deviates from this trend, and there are notably three large spikes at‬
‭approximately the first three seconds, around 5 seconds, and at about 13 seconds. However, it is important‬
‭to note that a very small proportion of the sample was considered to be underweight, so there is less data‬
‭for inference on this group.‬

‭Table 8. Log-Rank Test for Weight Classification‬

‭Log-Rank Test Statistic‬ ‭DF‬ ‭p-value‬

‭34.1‬ ‭3‬ ‭<.0001‬

‭We performed a log-rank test to determine whether the survival experiences differ between the different‬
‭weight categories. The results of this test can be found above in‬‭Table 8.‬‭The null hypothesis is that the‬
‭probability of a participant maintaining their balance beyond time t seconds is the same regardless of‬
‭weight category for any time t.  Based on the high test statistic for this test of 34.1, and very small p-value‬
‭of <.0001, we reject this null hypothesis at any reasonable level of significance. There is very strong‬
‭evidence to conclude that the survival experiences for the different weight categories differ significantly‬
‭for at least some time t.‬

‭Regression Analysis‬

‭In order to examine the relationship between the hazard of losing balance and the variables age, gender,‬
‭BMI, weight and height, we fit Cox regression models to the data. After iterating through multiple‬
‭models, our final Cox regression model includes age and the interaction between gender and BMI, and‬
‭excludes weight and height.‬

‭Table 9: Final Model Parameter Estimates and Significance‬

‭Predictor‬ ‭Parameter‬
‭Estimate‬
‭(‬ ‭)‬β

^

‭𝑒‬β
^ ‭Standard‬

‭Error‬
‭Wald Test‬
‭P-Value‬

‭95% Confidence‬
‭Interval for‬‭𝑒‬β

‭Lower‬
‭Bound‬

‭Upper‬
‭Bound‬

‭Gender (Female)‬ ‭-1.093‬ ‭0.334‬ ‭0.348‬ ‭0.00169‬ ‭0.1695‬ ‭0.6631‬
‭BMI‬ ‭-0.0531‬ ‭0.948‬ ‭0.0104‬ ‭3.24e-07‬ ‭0.9291‬ ‭0.9678‬
‭Age (Months)‬ ‭0.00388‬ ‭1.004‬ ‭0.000197‬ ‭2e-16‬ ‭1.0035‬ ‭1.0043‬
‭Gender * BMI‬ ‭0.0425‬ ‭1.043‬ ‭0.0125‬ ‭0.000649‬ ‭1.0182‬ ‭1.0692‬

‭At a significance level of 0.01, based on the extremely small p-values from Wald tests performed on each‬
‭of the individual predictors, we can conclude that each of these predictors are significantly associated‬
‭with the hazard of losing balance, after adjusting for the remaining predictors. Furthermore, based on the‬
‭small p-value for the likelihood ratio test, we can conclude that age and the interaction between gender‬
‭and BMI are jointly significantly associated with the hazard of losing balance.‬
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‭In order to use Cox regression, the data must conform to the proportional hazards assumption. We‬
‭examined LOWESS curves fit to the Schoenfeld residuals as a factor of time, as well as performing a‬
‭formal Schoenfeld residuals test, in order to determine if the assumption is fulfilled.‬

‭Figure 13: Schoenfeld Residuals for Cox Regression Predictors as a Factor of Time‬

‭At a significance level of 0.01, none of the Schoenfeld residual tests on the predictors yielded a p-value‬
‭less than or equal to 0.01. Based on both observing flat horizontal LOWESS curves for the Schoenfeld‬
‭residuals as a function of time for each predictor, as well as the high p-values for the Schoenfeld residuals‬
‭test test, we can conclude that the proportional hazards assumption has not been violated for any of the‬
‭predictors included in this model. It is therefore appropriate to use Cox regression to analyze the joint‬
‭relationship between each of these predictors and the risk of losing balance during the balance test. No‬
‭outlying values were removed from the analysis.‬

‭In order to investigate how the effect of gender on the hazard of losing balance may change depending on‬
‭BMI due to the interaction between gender and BMI, we examined the hazard ratio for each of the‬
‭scenarios seen in Table X below.‬

‭Table 10: Estimated Hazard Ratios between Genders, for Different BMI values, Adjusting for Age‬

‭Hazard Ratio (HR) Description‬ ‭Estimated HR‬ ‭95% Confidence Interval for HR‬

‭Lower Bound‬ ‭Upper Bound‬

‭Male with Sample Minimum BMI (15.8)‬
‭vs. Female with Sample Minimum BMI,‬
‭Adjusting for Age‬

‭1.524‬ ‭0.840‬ ‭2.765‬

‭Male with Sample Average BMI‬
‭(28.139) vs. Female with Sample‬

‭0.902‬ ‭0.451‬ ‭1.795‬



‭12‬

‭Average BMI, Adjusting for Age‬

‭Male with Sample Maximum BMI‬
‭(54.65) vs. Female with Sample‬
‭Maximum BMI, Adjusting for Age‬

‭0.292‬ ‭0.0915‬ ‭0.934‬

‭The risk of losing balance is estimated to be 52% higher for male balance test participants with sample‬
‭minimum BMI (15.80) compared to female balance test participants of sample minimum BMI, after‬
‭adjusting for age. Furthermore, we are 95% confident that the risk of losing balance for male balance test‬
‭participants of sample minimum BMI is between 16% lower to 176% higher than the risk of losing‬
‭balance for female balance test participants of sample minimum BMI, after adjusting for age.‬

‭The risk of losing balance is estimated to be 10% lower for male balance test participants with sample‬
‭average BMI (28.14) compared to female balance test participants of sample average BMI, after adjusting‬
‭for age. Furthermore, we are 95% confident that the risk of losing balance for male balance test‬
‭participants of sample average BMI is between 55% lower to 79% higher than the risk of losing balance‬
‭for female balance test participants of sample average BMI, after adjusting for age.‬

‭The risk of losing balance is estimated to be 71% lower for male balance test participants with sample‬
‭maximum BMI (54.65) compared to female balance test participants of sample maximum BMI, after‬
‭adjusting for age. Furthermore, we are 95% confident that the risk of losing balance for male balance test‬
‭participants of sample maximum BMI is between 7% to 91% lower than the risk of losing balance for‬
‭female balance test participants of sample maximum BMI, after adjusting for age.‬

‭Between all three comparisons of gender (at sample minimum BMI, average BMI, and maximum BMI),‬
‭we can see how the relationship between the hazard of losing balance and gender changes depending on‬
‭BMI in this model. For the sample minimum BMI, the risk of losing balance is estimated to be higher for‬
‭male participants than female participants while for the sample maximum BMI, the risk of losing balance‬
‭is estimated to be lower for male participants than female participants, after adjusting for age. Because we‬
‭observe that after adjusting for age, the 95% confidence intervals for the true hazard ratio between male‬
‭and female participants at sample minimum BMI and sample average BMI both capture the value of 1‬
‭while the 95% confidence interval for the true hazard ratio between male and female participants at‬
‭sample maximum BMI does not, there is evidence for a difference in true hazard ratio between genders at‬
‭higher BMI but not lower BMI, after adjusting for age.‬

‭We additionally investigated how the relationship between BMI and the hazard of losing balance differed‬
‭by gender.‬

‭Table 11: Estimated Hazard Ratio for 5 Unit Increase in BMI, by Gender, Adjusting for Age‬

‭Hazard Ratio (HR) Description‬ ‭Estimated HR‬ ‭95% Confidence Interval for HR‬

‭Lower Bound‬ ‭Upper Bound‬
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‭5 Unit Increase in BMI, Male,‬
‭Adjusting for Age‬

‭0.767‬ ‭0.692‬ ‭0.849‬

‭5 Unit Increase in BMI, Female,‬
‭Adjusting for Age‬

‭0.948‬ ‭0.839‬ ‭1.072‬

‭The risk of losing balance is estimated to decrease by 23% for every 5 unit increase in BMI in male‬
‭balance test subjects, after adjusting for age. Furthermore, we are 95% confident that the risk of losing‬
‭balance decreases by between 15% to 31% for every 5 unit increase in BMI in male balance test subjects,‬
‭after adjusting for age.‬

‭The risk of losing balance is estimated to decrease by 5% for every 5 unit increase in BMI in female‬
‭balance test subjects, after adjusting for age. Furthermore, we are 95% confident that the risk of losing‬
‭balance is between 16% lower to 7% higher for every 5 unit increase in BMI in male balance test‬
‭subjects, after adjusting for age.‬

‭Between both hazard ratio analyses, male and female, for a 5 unit BMI increase, we can see that for both‬
‭genders, a 5 unit increase in BMI corresponds to an estimated decrease in risk of losing balance at any‬
‭time during the balance test. However, the 95% confidence interval for a 5 unit increase in BMI for‬
‭female participants captures the value 1, which corresponds to a percent difference of 0% and indicates a‬
‭lack of evidence that BMI is associated with the hazard of losing balance for female participants. On the‬
‭other hand, the 95% confidence interval for a 5 unit increase in BMI for male participants does not‬
‭capture the value 1, indicating evidence that BMI is associated with the hazard of losing balance for male‬
‭participants.‬

‭Conclusion‬

‭Based on our survival analysis using parametric, nonparametric, and regression methods, we identified‬
‭significant trends and patterns in time until losing balance during the fourth trial of the NHANES balance‬
‭test. In general, for the population of healthy and unimpaired U.S. adults ages 40 and over, the greatest‬
‭estimated risk of losing balance during the balance test occurs within the first five seconds. Survival times‬
‭for the balance test may be best described by a three-parameter lognormal distribution. These findings‬
‭imply that adults with poor balance might be quickly distinguished by an extremely short survival time.‬

‭Furthermore, we identified differences in balance test survival experiences for varying populations based‬
‭on gender, height, weight, age in months, and BMI. Specifically, in our parametric and nonparametric‬
‭survival analyses, we found that survival experiences differ considerably between BMI classes. For any‬
‭time t, individuals classified as obese or overweight were estimated to be at lower risk for losing balance‬
‭and had a higher estimated probability of remaining balanced past that time, compared to healthy or‬
‭underweight individuals. Applying a Cox regression analysis with a model involving age and an‬
‭interaction between gender and BMI revealed that this relationship between risk of losing balance and‬
‭BMI depends on gender, with more significant differences in estimated risk of losing balance between‬
‭high and low BMI occurring for male participants than female participants, after controlling for age.‬
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‭While there may not be significantly different survival experiences between male and female gendered‬
‭participants, after controlling for age, the relationship between risk of losing balance significantly‬
‭depends on gender.‬

‭Overall, this survival analysis revealed that BMI is a significant factor in survival experience for‬
‭individuals undergoing balance tests. As a result, it is important to keep BMI under consideration when‬
‭evaluating an individual for balance disorders. Because adults with higher BMI are estimated to have a‬
‭higher probability of remaining balanced beyond any given time compared to adults with lower BMI, it‬
‭may be more difficult to diagnose balance disorders and conditions where loss of balance is an important‬
‭symptom for individuals with higher BMI.‬
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‭Appendix‬

‭Parametric Analysis Minitab Output‬
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‭Cox Regression Code‬

‭# Setup‬
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‭library(survival)‬
‭library(tidyverse)‬

‭balance <- read.csv("balance_test.csv")‬
‭balance‬

‭cr.obj <- coxph(Surv(time, censor)~as.factor(gender)*bmi+age_months,‬
‭data = balance)‬

‭summary(cr.obj)‬

‭# Schoenfeld Residuals Analysis‬
‭schoen <- residuals(cr.obj, type="schoenfeld")‬

‭balance2 <- balance %>%‬
‭select(time, censor, gender, bmi, age_months) %>%‬
‭drop_na()‬

‭comp.times <-  balance2 %>%‬
‭filter(censor != 0) %>%‬
‭pull(time)‬

‭par(mfrow=c(2,2))‬

‭## Schoenfeld Residuals vs Gender‬
‭plot(comp.times, schoen[,1], xlab="Time",‬

‭ylab="Schoenfeld Residuals", main="Predictor: Gender")‬
‭smooth.sres <- lowess(comp.times, schoen[,1])‬
‭lines(smooth.sres$x, smooth.sres$y, lty=1)‬

‭## Schoenfeld Residuals vs BMI‬
‭plot(comp.times, schoen[,2], xlab="Time",‬

‭ylab="Schoenfeld Residuals", main="Predictor: BMI")‬
‭smooth.sres <- lowess(comp.times, schoen[,2])‬
‭lines(smooth.sres$x, smooth.sres$y, lty=1)‬

‭## Schoenfeld Residuals vs Age in Months‬
‭plot(comp.times, schoen[,3], xlab="Time",‬

‭ylab="Schoenfeld Residuals", main="Predictor: Age in Months")‬
‭smooth.sres <- lowess(comp.times, schoen[,3])‬
‭lines(smooth.sres$x, smooth.sres$y, lty=1)‬

‭## Schoenfeld Residuals vs Gender x BMI‬
‭plot(comp.times, schoen[,4], xlab="Time",‬

‭ylab="Schoenfeld Residuals", main="Predictor: Gender*BMI")‬
‭smooth.sres <- lowess(comp.times, schoen[,4])‬
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‭lines(smooth.sres$x, smooth.sres$y, lty=1)‬

‭## Schoenfeld Residuals Test‬
‭cox.zph(cr.obj, transform="log")‬

‭# Hazard Ratios‬
‭min_age <- min(balance2$age_months)‬
‭mean_age <- mean(balance2$age_months)‬
‭max_age <- max(balance2$age_months)‬

‭## Function to calculate estimated hazard ratio‬
‭haz.ratio <- function(cr.obj, v1, v2) {‬

‭coefs <- cr.obj$coefficients‬
‭hr <- exp(sum(coefs * v1)) / exp(sum(coefs * v2))‬
‭return(hr)‬

‭}‬

‭## Function to calculate hazard ratio confidence interval‬
‭## Verified correctness by comparing with summary(cr.obj) output‬
‭hr.ci <- function(cr.obj, v1, v2) {‬

‭v <- v1 - v2‬
‭varcov <- cr.obj$var‬
‭varcov[lower.tri(varcov)] <- 0 # Make sure we don't repeat‬

‭covariances‬
‭var <- sum(v[1] * v * varcov[1,]) +‬

‭sum(v[2] * v * varcov[2,]) +‬
‭sum(v[3] * v * varcov[3,]) +‬
‭sum(v[4] * v * varcov[4,])‬

‭se <- sqrt(var)‬
‭loghr <- log(haz.ratio(cr.obj, v1, v2))‬
‭return(exp(loghr + c(-1.96, 1.96)*se))‬

‭}‬

‭## HR Comparing Gender, Min BMI‬
‭haz.ratio(cr.obj,‬

‭c(0, min_bmi, mean_age, 0*min_bmi),‬
‭c(1, min_bmi, mean_age, 1*min_bmi))‬

‭hr.ci(cr.obj,‬
‭c(0, min_bmi, mean_age, 0*min_bmi),‬
‭c(1, min_bmi, mean_age, 1*min_bmi))‬

‭## HR Comparing Gender, Average BMI‬
‭haz.ratio(cr.obj,‬

‭c(0, mean_bmi, mean_age, 0*mean_bmi),‬
‭c(1, mean_bmi, mean_age, 1*mean_bmi))‬
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‭hr.ci(cr.obj,‬
‭c(0, mean_bmi, mean_age, 0*mean_bmi),‬
‭c(1, mean_bmi, mean_age, 1*mean_bmi))‬

‭## HR Comparing Gender, Max BMI‬
‭haz.ratio(cr.obj,‬

‭c(0, max_bmi, mean_age, 0*max_bmi),‬
‭c(1, max_bmi, mean_age, 1*max_bmi))‬

‭hr.ci(cr.obj,‬
‭c(0, max_bmi, mean_age, 0*max_bmi),‬
‭c(1, max_bmi, mean_age, 1*max_bmi))‬

‭## HR for 5 Unit Increase in BMI, Male‬
‭haz.ratio(cr.obj,‬

‭c(0, 5, mean_age, 0*5),‬
‭c(0, 0, mean_age, 0*0))‬

‭hr.ci(cr.obj,‬
‭c(0, 5, mean_age, 0*5),‬
‭c(0, 0, mean_age, 0*0))‬

‭## HR for 5 Unit Increase in BMI, Female‬
‭haz.ratio(cr.obj,‬

‭c(1, 5, mean_age, 1*5),‬
‭c(1, 0, mean_age, 1*0))‬

‭hr.ci(cr.obj,‬
‭c(1, 5, mean_age, 1*5),‬
‭c(1, 0, mean_age, 1*0))‬

‭Cox Regression Final Model Summary‬

‭Call:‬
‭coxph(formula = Surv(time, censor) ~ as.factor(gender) * bmi +‬

‭age_months, data = balance)‬

‭n= 2338, number of events= 1203‬
‭(95 observations deleted due to missingness)‬

‭coef  exp(coef)   se(coef)      z‬
‭Pr(>|z|)‬
‭as.factor(gender)2     -1.0929764  0.3352173  0.3480523 -3.140‬
‭0.001688 **‬
‭bmi                    -0.0531210  0.9482653  0.0103980 -5.109‬
‭3.24e-07 ***‬
‭age_months              0.0038782  1.0038857  0.0001967 19.712  <‬
‭2e-16 ***‬
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‭as.factor(gender)2:bmi  0.0425052  1.0434215  0.0124639  3.410‬
‭0.000649 ***‬
‭---‬
‭Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1‬

‭exp(coef) exp(-coef) lower .95 upper .95‬
‭as.factor(gender)2        0.3352     2.9831    0.1695    0.6631‬
‭bmi                       0.9483     1.0546    0.9291    0.9678‬
‭age_months                1.0039     0.9961    1.0035    1.0043‬
‭as.factor(gender)2:bmi    1.0434     0.9584    1.0182    1.0692‬

‭Concordance= 0.67  (se = 0.008 )‬
‭Likelihood ratio test= 425.1  on 4 df,   p=<2e-16‬
‭Wald test            = 428.6  on 4 df,   p=<2e-16‬
‭Score (logrank) test = 452.8  on 4 df,   p=<2e-16‬

‭Schoenfeld Residuals Test Output‬

‭chisq df    p‬
‭as.factor(gender)     0.0568  1 0.81‬
‭bmi                   1.8705  1 0.17‬
‭age_months            0.3432  1 0.56‬
‭as.factor(gender):bmi 0.1070  1 0.74‬
‭GLOBAL                4.2982  4 0.37‬

‭Non-parametric Analysis Code‬

‭# Non-parametric Estimates‬
‭# Creating Weight Category Variable‬
‭balance_test$weight_category <- ifelse(balance_test$bmi < 18.5,‬
‭"Underweight",‬

‭ifelse(balance_test$bmi >= 18.5‬
‭& balance_test$bmi < 24.9, "Healthy Weight",‬

‭ifelse(balance_test$bmi‬
‭>= 25 & balance_test$bmi < 29.9, "Overweight",‬

‭"Obese")))‬
‭# Overall‬
‭KM.obj <- survfit(Surv(time,censor)~1,  conf.type = "none",‬
‭data=balance_test)‬
‭# KM overall survival curve‬
‭plot(KM.obj, xlab = "Seconds", ylab = "Survival Probability",‬

‭main = "KM Curve overall")‬
‭# KM hazard overall‬
‭plot.haz(KM.obj)‬
‭# KM estimates overall‬
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‭summary(KM.obj)‬
‭mean(balance_test$time)‬

‭# By Gender (male = 1, female = 2)‬
‭KM.obj.Gender <- survfit(Surv(time, censor) ~ gender, data =‬
‭balance_test)‬
‭# KM Survival Curve Gender‬
‭plot(KM.obj.Gender, xlab = "Seconds", ylab = "Survival Probability",‬

‭main = "KM Curve by Gender", lty = 1:2)‬
‭legend(1,.3,c("Males", "Females"),lty=1:2)‬
‭# Side by side KM hazard by gender‬
‭Males <- subset(balance_test, gender == 1)‬
‭KM.obj.Males <- survfit(Surv(time, censor) ~ gender, data = Males)‬
‭mean(Males$time)‬
‭par(mfrow=c(1,2))‬
‭plot.hazNew(KM.obj.Males, title = "Males", ylimits = c(0, .09))‬
‭Females <- subset(balance_test, gender == 2)‬
‭KM.obj.Females <- survfit(Surv(time, censor) ~ gender, data = Females)‬
‭mean(Females$time)‬
‭plot.hazNew(KM.obj.Females, title = "Females", ylimits = c(0, .09))‬
‭# KM estimates by Gender‬
‭summary(KM.obj.Gender)‬
‭# Log-rank Gender‬
‭survdiff(Surv(time, censor) ~ gender, data = balance_test)‬

‭# By BMI category‬
‭KM.obj.BMI <- survfit(Surv(time, censor) ~ weight_category, data =‬
‭balance_test)‬
‭# KM Survival curve by BMI category‬
‭plot(KM.obj.BMI, xlab = "Seconds", ylab = "Survival Probability",‬

‭main = "KM Curve by Weight Category", lty = 1:4)‬
‭legend(-1,.4,c("Healthy Weight","Obese" , "Overweight",‬
‭"Underweight"),lty=1:4)‬
‭# Side by Side KM hazard by BMI category‬
‭par(mfrow=c(2,2))‬
‭Underweight <- subset(balance_test, weight_category == "Underweight")‬
‭KM.obj.Underweight <- survfit(Surv(time, censor) ~ weight_category,‬
‭data = Underweight)‬
‭mean(Underweight$time)‬
‭HealthyWeight <- subset(balance_test, weight_category == "Healthy‬
‭Weight")‬
‭KM.obj.Healthy <- survfit(Surv(time, censor) ~ weight_category, data =‬
‭HealthyWeight)‬
‭mean(HealthyWeight$time)‬
‭Obese <- subset(balance_test, weight_category == "Obese")‬
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‭KM.obj.Obese <- survfit(Surv(time, censor) ~ weight_category, data =‬
‭Obese)‬
‭mean(Obese$time)‬
‭Overweight <- subset(balance_test, weight_category == "Overweight")‬
‭KM.obj.Overweight <- survfit(Surv(time, censor) ~ weight_category,‬
‭data = Overweight)‬
‭mean(Overweight$time)‬
‭plot.hazNew(KM.obj.Underweight, title = "Underweight", ylimits = c(0,‬
‭.14))‬
‭plot.hazNew(KM.obj.Healthy, title = "Healthy Weight", ylimits = c(0,‬
‭.14))‬
‭plot.hazNew(KM.obj.Overweight, title = "Overweight", ylimits = c(0,‬
‭.14))‬
‭plot.hazNew(KM.obj.Obese, title = "Obese", ylimits = c(0, .14))‬
‭# KM estimates by BMI cateogory‬
‭summary(KM.obj.BMI)‬
‭# Log-rank BMI category‬
‭survdiff(Surv(time, censor) ~ weight_category, data = balance_test)‬


