
Brendan Callender

DBSCAN and GMMs with
tidyclust in R

Advisor: Dr. Bodwin
Committee Members: Dr. Lund, and Dr. Dekhtyar

Agenda

1. What is tidyclust?

2. What I added to tidyclust

– Density-based clustering with DBSCAN

– Model-based clustering with GMMs

Clustering
• Unsupervised learning method

• Used to find groupings in data
based on internal patterns

Example Clustering Result Actual Penguins Species

There are many different clustering methods!

Each has its own strengths and weaknesses

These methods are scattered across many R packages!

R has many ways to do the same thing
– Different packages pick what works best for them
– Ex. Making a simple scatterplot

plot(y ~ x, data) # formulas

plot(data$x, data$y) # dollar signs

data %>% # tidy
 ggplot() +
 geom_point(aes(x = x, y = y))

1
2
3
4
5
5
6

The tidyclust package

• Unifies clustering methods in R under a common interface
– All methods use the same syntax!

• Like tidymodels but for unsupervised learning!
– Follows conventions set in the tidyverse

1
2

A quick tutorial for tidyclust

Using k-means clustering as an example

library(tidyclust)
library(tidymodels)

1
2
3
4
5

Creating a clustering specification

k_means_spec <- k_means(
mode = "partition",
engine = "dbscan",
num_clusters = 3

)

Where…
• mode controls the behavior of the specification
• engine controls which underlying package implementation to use
• num_clusters…

k_means_recipe <- recipe(~ predictor1 + predictor2 + …)|>
step_naomit(all_predictors()) |>
step_normalize(all_numeric_predictors())

1
2
3

Creating a recipe

The recipe can be used to…
1. Select which columns to use for the model using formula notation

2. Preform preprocessing steps using step_*() functions

• Example. step_pca() and so much more!

1
2
3

k_means_wflow <- workflow()|>
add_model(k_means_spec)|>
add_recipe(k_means_recipe)

The workflow is used to combine a model and a recipe together

• Allows for easy mixing and matching of different model

specifications and setups

Creating a workflow

1
2

1
2

Fitting the model

k_means_fit <- k_means_spec |>
 fit(~ predictor1 + predictor2 + ..., data)

k_means_fit <- k_means_wflow |>
 fit(data)

You can fit directly using the clustering specification

Or use a workflow

• For workflows, we just need to provide the data since the recipe controls which
columns to use

1

Use the model to predict on new data
1 predict(k_means_fit, new_data)

k_means_fit |> extract_fit_summary()

Extract key features of the model fit

1 k_means_fit |> extract_fit_engine()

Extract underlying engine object

What else?

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Model Argument Tuning
data_cvs <- vfold_cv(data, v = 5)

k_means_tune <- k_means(num_clusters = tune())

k_means_grid <- grid_regular(
num_clusters(c(3,7)),
levels = 5

)

k_means_tune_res <- tune_cluster(
 k_means_tune,
 resamples = data_cvs,
 grid = k_means_grid
)

This process is the
same across all
clustering
specifications!

What I added to tidyclust!

• Density-based clustering with DBSCAN
• Model-based clustering with Gaussian Mixture Models

What this took…
1. Researching each method
2. Finding a current implementation in R
3. Writing a lot of code

Density-based
Clustering with
DBSCAN

DBSCAN
Density-based Spatial Clustering of Applications with Noise

Arguments:
• ϵ (epsilon)
– Controls the radius of the region used to…
 1. Compute density estimates
 2. Determine connected points

• MinPts
– Used as a density threshold to identify clusters

Important DBSCAN Definitions

1. The 𝛜-neighborhood of a point is the
set of all points that are within 𝜖 distance
from point

2. A core point is a point that contains at
least MinPts number of points within its
𝜖-neighborhood

The DBSCAN Algorithm

𝜖 = 0.28
MinPts = 7

Core Point Discovery

The fitting process
begins by scanning
through the dataset
for core points

Cluster Formation

Once a core point is found
a new cluster is formed
and all points within the
𝜖-neighborhood of the
point are added

Recursive Clustering Building

If a core point is added to
the cluster, the cluster is
expanded to all points the
𝜖-neighborhood of the
core point.

Final Cluster Assignments

This process is
repeated until all
core points have
been found

1
2

DBSCAN with the dbscan package
library(dbscan)
dbscan(x, eps, minPts = 5, weights = NULL, borderPoints = TRUE, ...)

Where…
• x is the data to perform DBSCAN on
• eps is the radius of the 𝜖-neighborhood used to identify
 core points
• minPts is the density threshold used to identify core points

DBSCAN in tidyclust

db_clust_spec <- db_clust(
mode = "partition",
engine = "dbscan",
radius = NULL,
min_points = NULL

)

1
2
3
4
5
6

Where…
• radius is the radius of the 𝜖-neighborhood used to identify core points
• min_points is the density threshold used to identify core points

How db_clust() fits differently than dbscan()

What happens when a
border point lies
between core points in
different clusters?

dbscan()results can differ depending on
the order the data is processed

db_clust() Fitting Process

1. Core point discovery

2. Cluster Formation

3. Recursive Cluster building

– Only expand clusters to other core points

– Wait to assign border points until all core points have been found

4. Assign clusters to border points based on nearest core point

db_clust() Recursive Cluster Building

db_clust() Final Cluster Assignments

How db_clust()
predicts differently than

dbscan()

How db_clust() predicts differently than dbscan()

For dbscan(), a new observation will be predicted to a
cluster if it lies within the 𝛜-neighborhood of a any point in
a cluster

For db_clust(), a new observation will be predicted to a
cluster if it lies within the 𝛜-neighborhood of a core point

1 predict(db_clust_fit, new_data)

1 predict(dbscan_fit, data, newdata)

Prediction Comparison

db_clust()dbscan()

Model-based
Clustering with
GMMs

Gaussian Mixture Models (GMMs)

• Assumes the data is composed of clusters which are each
generated from separate multivariate Gaussian distributions

𝑓 𝑥 = %
!"#

$

𝑝!𝛷 𝑥|𝜇!, 𝛴!

Where…
• 𝑝! is the weight for the gth Guassian component
• 𝜇! is the mean vector for the gth Gaussian component

• 𝛴! is the variance covariance matrix for the gth Gaussian component

Gaussian Mixture Models (cont.)

• Model-based methods can provide soft clustering labels
– The estimated pdfs can be used to estimate the probability

an observation belongs to each cluster

!𝛾!" =
�̂�#𝑓 𝑥!|)𝜃"

∑$%&' �̂�$𝑓 𝑥!|)𝜃$

Importance of Variance-Covariance Matrices

For Gaussian distributions, 𝚺 controls the distribution…

Shape OrientationSize

Shape

𝛴! =
1 0
0 1 𝛴" =

2 0
0 1

x2

x1

x2

x1

Size

𝛴# =
2 0
0 1 𝛴$ =

4 0
0 2

x2

x1

x2

x1

Orientation

𝛴% =
2 0
0 1

𝛴& =
2 −1
−1 1

x2

x1x1

x2

GMM Model Specifications

• 14 different possible model specifications
• Circular clusters or ellipsoidal?
• Zero or non-zero covariances?
• Should clusters have the same shape/size/orientation?

• Commonly referenced with 3-character model names
Examples:
 EII, VII, EEI, EVI, EVE, EVV, VVV

GMM Model Specifications (cont.)
EII – Circular, Equal Size EEI – Ellipse, Zero Covariance,

Unequal Shape/Size

VVV – Ellipse, Unequal
Orientation/Shape/Size

EEE – Ellipse, Equal
Orientation/Shape/Size

GMMs with the mclust package

Mclust(data, G = 1:9, modelNames = c("EII", "VII", ..., "VVV"), ...)

Where…
• data is the data to fit a GMM to
• G is number of Gaussians to fit
• modelNames is a vector containing the model names to fit

Mclust will fit all combinations of G and modelNames and
return best result based on BIC

1

Applying tidy principles to GMM Model Names

• Make model arguments more self-documenting
– Argument names guide user when selecting values

• Separation of fitting and tuning
– Fit a single model with fit()
– Use tuning when comparing multiple specifications

GMM Model Specification Tree

1
2
3
4
5
6
7
8

GMMs via tidyclust
gm_clust_spec <- gm_clust(num_clusters,

circular = TRUE,
zero_covariance = TRUE,
shared_orientation = TRUE,
shared_shape = TRUE,
shared_size = TRUE) %>%

set_engine("mclust") %>%
set_mode("parition")

Where…
• circular controls whether fitted clusters will be circular or ellipsoidal
• zero_covariance controls whether clusters will have zero or non-zero

covariances
• shared_{} controls whether clusters will have a shared shape, size, and

orientation

gm_clust() Arguments

All arguments default to TRUE

• Arguments are named such that TRUE means constraining the
model to be more simple

• Reduces the number of parameters than need to be estimated

• Not all datasets will be able to estimate the parameters required
for the most complex model

gm_clust() Arguments (cont.)

• 5 TRUE/FALSE arguments
– 2" = 32 argument combinations but 14 model specifications?

• Ex. Circular clusters
– Automatically have same shape and zero covariances!

GMM Model
Specification Tree

1
2
3
4
5
6
7
8
9

Fitting with gm_clust()

gm_clust_fit <- gm_clust_spec %>%
fit(~ predictor1 + predictor2 + ..., data)

gm_recipe <- recipe(. ~ predictor1 + predictor2 + ..., data) %>%
step_naomit(...)

gm_workflow <- workflow() %>%
add_model(gm_clust_spec) %>%
add_recipe(gm_recipe)

gm_clust_fit <- gm_workflow %>%
fit()

1
2

Predicting with gm_clust()

New observations will be
predicted to belong to the
cluster in which they have the
largest probability of
belonging to

1 predict(gm_clust_fit, new_data)

Thank you!

Especially to Dr. Bodwin!!!

